StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
1.4 KiB
72 lines
1.4 KiB
4 years ago
|
convex-hull
|
||
|
===========
|
||
|
This module is a wrapper over various convex hull modules which exposes a simple interface for computing convex hulls of point sets in any dimension.
|
||
|
|
||
|
# Example
|
||
|
|
||
|
```javascript
|
||
|
var ch = require('convex-hull')
|
||
|
|
||
|
var points = [
|
||
|
[0,0],
|
||
|
[1,0],
|
||
|
[0,1],
|
||
|
[0.15,0.15],
|
||
|
[0.5, 0.5]
|
||
|
]
|
||
|
|
||
|
|
||
|
//Picture:
|
||
|
//
|
||
|
// [0,1] *
|
||
|
// |\
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | * [0.5,0.5]
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | \
|
||
|
// | * \
|
||
|
// | [0.15,0.15] \
|
||
|
// [0,0] *---------------* [1,0]
|
||
|
//
|
||
|
|
||
|
console.log(ch(points))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
|
||
|
```javascript
|
||
|
[[0, 1], [1, 2], [2, 0]]
|
||
|
```
|
||
|
|
||
|
# Install
|
||
|
|
||
|
```
|
||
|
npm install convex-hull
|
||
|
```
|
||
|
|
||
|
If you want to use it in a webpage, use [browserify](http://browserify.org).
|
||
|
|
||
|
# API
|
||
|
|
||
|
#### `require('convex-hull')(points)`
|
||
|
Computes the convex hull of `points`
|
||
|
|
||
|
* `points` is an array of points encoded as `d` length arrays
|
||
|
|
||
|
**Returns** A polytope encoding the convex hull of the point set.
|
||
|
|
||
|
**Time complexity** The procedure takes O(n^floor(d/2) + n log(n)) time.
|
||
|
|
||
|
**Note** This module is a wrapper over incremental-convex-hull and monotone-convex-hull for convenience. It will select an optimal algorithm for whichever dimension is appropriate.
|
||
|
|
||
|
|
||
|
# Credits
|
||
|
(c) 2014 Mikola Lysenko. MIT License
|