StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/cache_dir/joblib/run/EnsembleModel/func_code.py

55 lines
2.7 KiB

6 years ago
# first line: 249
def EnsembleModel (ClassifierIDsList, keyRetrieved):
if (keyRetrieved == 0):
all_classifiers = []
all_classifiers.append(KNeighborsClassifier(n_neighbors=1))
all_classifiers.append(KNeighborsClassifier(n_neighbors=2))
all_classifiers.append(KNeighborsClassifier(n_neighbors=10))
all_classifiers.append(RandomForestClassifier(random_state=RANDOM_SEED, n_estimators = 1))
all_classifiers.append(RandomForestClassifier(random_state=RANDOM_SEED, n_estimators = 50))
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
for clf, label in zip([sclf],
['StackingClassifierAllClassifiers']):
scores = model_selection.cross_val_score(clf, XData, yData,
cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]"
% (scores.mean(), scores.std(), label))
else:
all_classifiers = []
ClassifierIDsList = ClassifierIDsList.split('"')
for loop in ClassifierIDsList:
if ('ClassifierID' in loop):
if (loop == 'ClassifierID: 1'):
all_classifiers.append(KNeighborsClassifier(n_neighbors=1))
elif (loop == 'ClassifierID: 2'):
all_classifiers.append(KNeighborsClassifier(n_neighbors=2))
elif (loop == 'ClassifierID: 3'):
all_classifiers.append(KNeighborsClassifier(n_neighbors=10))
elif (loop == 'ClassifierID: 4'):
all_classifiers.append(RandomForestClassifier(random_state=RANDOM_SEED, n_estimators = 1))
else:
all_classifiers.append(RandomForestClassifier(random_state=RANDOM_SEED, n_estimators = 50))
lr = LogisticRegression()
sclf = StackingCVClassifier(classifiers=all_classifiers,
use_probas=True,
meta_classifier=lr,
random_state=RANDOM_SEED,
n_jobs = -1)
for clf, label in zip([sclf],
['StackingClassifierSelectedClassifiers']):
scores = model_selection.cross_val_score(clf, XData, yData,
cv=5, scoring='accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]"
% (scores.mean(), scores.std(), label))