StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/frontend/node_modules/gl-matrix/cjs/vec3.js

890 lines
21 KiB

4 years ago
"use strict";
function _typeof(obj) { "@babel/helpers - typeof"; if (typeof Symbol === "function" && typeof Symbol.iterator === "symbol") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj; }; } return _typeof(obj); }
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.create = create;
exports.clone = clone;
exports.length = length;
exports.fromValues = fromValues;
exports.copy = copy;
exports.set = set;
exports.add = add;
exports.subtract = subtract;
exports.multiply = multiply;
exports.divide = divide;
exports.ceil = ceil;
exports.floor = floor;
exports.min = min;
exports.max = max;
exports.round = round;
exports.scale = scale;
exports.scaleAndAdd = scaleAndAdd;
exports.distance = distance;
exports.squaredDistance = squaredDistance;
exports.squaredLength = squaredLength;
exports.negate = negate;
exports.inverse = inverse;
exports.normalize = normalize;
exports.dot = dot;
exports.cross = cross;
exports.lerp = lerp;
exports.hermite = hermite;
exports.bezier = bezier;
exports.random = random;
exports.transformMat4 = transformMat4;
exports.transformMat3 = transformMat3;
exports.transformQuat = transformQuat;
exports.rotateX = rotateX;
exports.rotateY = rotateY;
exports.rotateZ = rotateZ;
exports.angle = angle;
exports.zero = zero;
exports.str = str;
exports.exactEquals = exactEquals;
exports.equals = equals;
exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = void 0;
var glMatrix = _interopRequireWildcard(require("./common.js"));
function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function _getRequireWildcardCache() { return cache; }; return cache; }
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } if (obj === null || _typeof(obj) !== "object" && typeof obj !== "function") { return { "default": obj }; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj["default"] = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
/**
* 3 Dimensional Vector
* @module vec3
*/
/**
* Creates a new, empty vec3
*
* @returns {vec3} a new 3D vector
*/
function create() {
var out = new glMatrix.ARRAY_TYPE(3);
if (glMatrix.ARRAY_TYPE != Float32Array) {
out[0] = 0;
out[1] = 0;
out[2] = 0;
}
return out;
}
/**
* Creates a new vec3 initialized with values from an existing vector
*
* @param {vec3} a vector to clone
* @returns {vec3} a new 3D vector
*/
function clone(a) {
var out = new glMatrix.ARRAY_TYPE(3);
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
/**
* Calculates the length of a vec3
*
* @param {vec3} a vector to calculate length of
* @returns {Number} length of a
*/
function length(a) {
var x = a[0];
var y = a[1];
var z = a[2];
return Math.hypot(x, y, z);
}
/**
* Creates a new vec3 initialized with the given values
*
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} a new 3D vector
*/
function fromValues(x, y, z) {
var out = new glMatrix.ARRAY_TYPE(3);
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Copy the values from one vec3 to another
*
* @param {vec3} out the receiving vector
* @param {vec3} a the source vector
* @returns {vec3} out
*/
function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
/**
* Set the components of a vec3 to the given values
*
* @param {vec3} out the receiving vector
* @param {Number} x X component
* @param {Number} y Y component
* @param {Number} z Z component
* @returns {vec3} out
*/
function set(out, x, y, z) {
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
/**
* Adds two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
/**
* Subtracts vector b from vector a
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function subtract(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
/**
* Multiplies two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function multiply(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
/**
* Divides two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function divide(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
}
/**
* Math.ceil the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to ceil
* @returns {vec3} out
*/
function ceil(out, a) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
return out;
}
/**
* Math.floor the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to floor
* @returns {vec3} out
*/
function floor(out, a) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
return out;
}
/**
* Returns the minimum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
}
/**
* Returns the maximum of two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function max(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
}
/**
* Math.round the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to round
* @returns {vec3} out
*/
function round(out, a) {
out[0] = Math.round(a[0]);
out[1] = Math.round(a[1]);
out[2] = Math.round(a[2]);
return out;
}
/**
* Scales a vec3 by a scalar number
*
* @param {vec3} out the receiving vector
* @param {vec3} a the vector to scale
* @param {Number} b amount to scale the vector by
* @returns {vec3} out
*/
function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
/**
* Adds two vec3's after scaling the second operand by a scalar value
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @param {Number} scale the amount to scale b by before adding
* @returns {vec3} out
*/
function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + b[0] * scale;
out[1] = a[1] + b[1] * scale;
out[2] = a[2] + b[2] * scale;
return out;
}
/**
* Calculates the euclidian distance between two vec3's
*
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {Number} distance between a and b
*/
function distance(a, b) {
var x = b[0] - a[0];
var y = b[1] - a[1];
var z = b[2] - a[2];
return Math.hypot(x, y, z);
}
/**
* Calculates the squared euclidian distance between two vec3's
*
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {Number} squared distance between a and b
*/
function squaredDistance(a, b) {
var x = b[0] - a[0];
var y = b[1] - a[1];
var z = b[2] - a[2];
return x * x + y * y + z * z;
}
/**
* Calculates the squared length of a vec3
*
* @param {vec3} a vector to calculate squared length of
* @returns {Number} squared length of a
*/
function squaredLength(a) {
var x = a[0];
var y = a[1];
var z = a[2];
return x * x + y * y + z * z;
}
/**
* Negates the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to negate
* @returns {vec3} out
*/
function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
}
/**
* Returns the inverse of the components of a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to invert
* @returns {vec3} out
*/
function inverse(out, a) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
return out;
}
/**
* Normalize a vec3
*
* @param {vec3} out the receiving vector
* @param {vec3} a vector to normalize
* @returns {vec3} out
*/
function normalize(out, a) {
var x = a[0];
var y = a[1];
var z = a[2];
var len = x * x + y * y + z * z;
if (len > 0) {
//TODO: evaluate use of glm_invsqrt here?
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
return out;
}
/**
* Calculates the dot product of two vec3's
*
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {Number} dot product of a and b
*/
function dot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/**
* Computes the cross product of two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @returns {vec3} out
*/
function cross(out, a, b) {
var ax = a[0],
ay = a[1],
az = a[2];
var bx = b[0],
by = b[1],
bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
}
/**
* Performs a linear interpolation between two vec3's
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
function lerp(out, a, b, t) {
var ax = a[0];
var ay = a[1];
var az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
}
/**
* Performs a hermite interpolation with two control points
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @param {vec3} c the third operand
* @param {vec3} d the fourth operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
function hermite(out, a, b, c, d, t) {
var factorTimes2 = t * t;
var factor1 = factorTimes2 * (2 * t - 3) + 1;
var factor2 = factorTimes2 * (t - 2) + t;
var factor3 = factorTimes2 * (t - 1);
var factor4 = factorTimes2 * (3 - 2 * t);
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Performs a bezier interpolation with two control points
*
* @param {vec3} out the receiving vector
* @param {vec3} a the first operand
* @param {vec3} b the second operand
* @param {vec3} c the third operand
* @param {vec3} d the fourth operand
* @param {Number} t interpolation amount, in the range [0-1], between the two inputs
* @returns {vec3} out
*/
function bezier(out, a, b, c, d, t) {
var inverseFactor = 1 - t;
var inverseFactorTimesTwo = inverseFactor * inverseFactor;
var factorTimes2 = t * t;
var factor1 = inverseFactorTimesTwo * inverseFactor;
var factor2 = 3 * t * inverseFactorTimesTwo;
var factor3 = 3 * factorTimes2 * inverseFactor;
var factor4 = factorTimes2 * t;
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
/**
* Generates a random vector with the given scale
*
* @param {vec3} out the receiving vector
* @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned
* @returns {vec3} out
*/
function random(out, scale) {
scale = scale || 1.0;
var r = glMatrix.RANDOM() * 2.0 * Math.PI;
var z = glMatrix.RANDOM() * 2.0 - 1.0;
var zScale = Math.sqrt(1.0 - z * z) * scale;
out[0] = Math.cos(r) * zScale;
out[1] = Math.sin(r) * zScale;
out[2] = z * scale;
return out;
}
/**
* Transforms the vec3 with a mat4.
* 4th vector component is implicitly '1'
*
* @param {vec3} out the receiving vector
* @param {vec3} a the vector to transform
* @param {mat4} m matrix to transform with
* @returns {vec3} out
*/
function transformMat4(out, a, m) {
var x = a[0],
y = a[1],
z = a[2];
var w = m[3] * x + m[7] * y + m[11] * z + m[15];
w = w || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
return out;
}
/**
* Transforms the vec3 with a mat3.
*
* @param {vec3} out the receiving vector
* @param {vec3} a the vector to transform
* @param {mat3} m the 3x3 matrix to transform with
* @returns {vec3} out
*/
function transformMat3(out, a, m) {
var x = a[0],
y = a[1],
z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
}
/**
* Transforms the vec3 with a quat
* Can also be used for dual quaternions. (Multiply it with the real part)
*
* @param {vec3} out the receiving vector
* @param {vec3} a the vector to transform
* @param {quat} q quaternion to transform with
* @returns {vec3} out
*/
function transformQuat(out, a, q) {
// benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed
var qx = q[0],
qy = q[1],
qz = q[2],
qw = q[3];
var x = a[0],
y = a[1],
z = a[2]; // var qvec = [qx, qy, qz];
// var uv = vec3.cross([], qvec, a);
var uvx = qy * z - qz * y,
uvy = qz * x - qx * z,
uvz = qx * y - qy * x; // var uuv = vec3.cross([], qvec, uv);
var uuvx = qy * uvz - qz * uvy,
uuvy = qz * uvx - qx * uvz,
uuvz = qx * uvy - qy * uvx; // vec3.scale(uv, uv, 2 * w);
var w2 = qw * 2;
uvx *= w2;
uvy *= w2;
uvz *= w2; // vec3.scale(uuv, uuv, 2);
uuvx *= 2;
uuvy *= 2;
uuvz *= 2; // return vec3.add(out, a, vec3.add(out, uv, uuv));
out[0] = x + uvx + uuvx;
out[1] = y + uvy + uuvy;
out[2] = z + uvz + uuvz;
return out;
}
/**
* Rotate a 3D vector around the x-axis
* @param {vec3} out The receiving vec3
* @param {vec3} a The vec3 point to rotate
* @param {vec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
function rotateX(out, a, b, rad) {
var p = [],
r = []; //Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2]; //perform rotation
r[0] = p[0];
r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);
r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad); //translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Rotate a 3D vector around the y-axis
* @param {vec3} out The receiving vec3
* @param {vec3} a The vec3 point to rotate
* @param {vec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
function rotateY(out, a, b, rad) {
var p = [],
r = []; //Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2]; //perform rotation
r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);
r[1] = p[1];
r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad); //translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Rotate a 3D vector around the z-axis
* @param {vec3} out The receiving vec3
* @param {vec3} a The vec3 point to rotate
* @param {vec3} b The origin of the rotation
* @param {Number} rad The angle of rotation in radians
* @returns {vec3} out
*/
function rotateZ(out, a, b, rad) {
var p = [],
r = []; //Translate point to the origin
p[0] = a[0] - b[0];
p[1] = a[1] - b[1];
p[2] = a[2] - b[2]; //perform rotation
r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);
r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);
r[2] = p[2]; //translate to correct position
out[0] = r[0] + b[0];
out[1] = r[1] + b[1];
out[2] = r[2] + b[2];
return out;
}
/**
* Get the angle between two 3D vectors
* @param {vec3} a The first operand
* @param {vec3} b The second operand
* @returns {Number} The angle in radians
*/
function angle(a, b) {
var ax = a[0],
ay = a[1],
az = a[2],
bx = b[0],
by = b[1],
bz = b[2],
mag1 = Math.sqrt(ax * ax + ay * ay + az * az),
mag2 = Math.sqrt(bx * bx + by * by + bz * bz),
mag = mag1 * mag2,
cosine = mag && dot(a, b) / mag;
return Math.acos(Math.min(Math.max(cosine, -1), 1));
}
/**
* Set the components of a vec3 to zero
*
* @param {vec3} out the receiving vector
* @returns {vec3} out
*/
function zero(out) {
out[0] = 0.0;
out[1] = 0.0;
out[2] = 0.0;
return out;
}
/**
* Returns a string representation of a vector
*
* @param {vec3} a vector to represent as a string
* @returns {String} string representation of the vector
*/
function str(a) {
return "vec3(" + a[0] + ", " + a[1] + ", " + a[2] + ")";
}
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*
* @param {vec3} a The first vector.
* @param {vec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
}
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*
* @param {vec3} a The first vector.
* @param {vec3} b The second vector.
* @returns {Boolean} True if the vectors are equal, false otherwise.
*/
function equals(a, b) {
var a0 = a[0],
a1 = a[1],
a2 = a[2];
var b0 = b[0],
b1 = b[1],
b2 = b[2];
return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));
}
/**
* Alias for {@link vec3.subtract}
* @function
*/
var sub = subtract;
/**
* Alias for {@link vec3.multiply}
* @function
*/
exports.sub = sub;
var mul = multiply;
/**
* Alias for {@link vec3.divide}
* @function
*/
exports.mul = mul;
var div = divide;
/**
* Alias for {@link vec3.distance}
* @function
*/
exports.div = div;
var dist = distance;
/**
* Alias for {@link vec3.squaredDistance}
* @function
*/
exports.dist = dist;
var sqrDist = squaredDistance;
/**
* Alias for {@link vec3.length}
* @function
*/
exports.sqrDist = sqrDist;
var len = length;
/**
* Alias for {@link vec3.squaredLength}
* @function
*/
exports.len = len;
var sqrLen = squaredLength;
/**
* Perform some operation over an array of vec3s.
*
* @param {Array} a the array of vectors to iterate over
* @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed
* @param {Number} offset Number of elements to skip at the beginning of the array
* @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array
* @param {Function} fn Function to call for each vector in the array
* @param {Object} [arg] additional argument to pass to fn
* @returns {Array} a
* @function
*/
exports.sqrLen = sqrLen;
var forEach = function () {
var vec = create();
return function (a, stride, offset, count, fn, arg) {
var i, l;
if (!stride) {
stride = 3;
}
if (!offset) {
offset = 0;
}
if (count) {
l = Math.min(count * stride + offset, a.length);
} else {
l = a.length;
}
for (i = offset; i < l; i += stride) {
vec[0] = a[i];
vec[1] = a[i + 1];
vec[2] = a[i + 2];
fn(vec, vec, arg);
a[i] = vec[0];
a[i + 1] = vec[1];
a[i + 2] = vec[2];
}
return a;
};
}();
exports.forEach = forEach;