StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
StackGenVis/frontend/node_modules/@mapbox/unitbezier/index.js

106 lines
3.3 KiB

4 years ago
/*
* Copyright (C) 2008 Apple Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Ported from Webkit
* http://svn.webkit.org/repository/webkit/trunk/Source/WebCore/platform/graphics/UnitBezier.h
*/
module.exports = UnitBezier;
function UnitBezier(p1x, p1y, p2x, p2y) {
// Calculate the polynomial coefficients, implicit first and last control points are (0,0) and (1,1).
this.cx = 3.0 * p1x;
this.bx = 3.0 * (p2x - p1x) - this.cx;
this.ax = 1.0 - this.cx - this.bx;
this.cy = 3.0 * p1y;
this.by = 3.0 * (p2y - p1y) - this.cy;
this.ay = 1.0 - this.cy - this.by;
this.p1x = p1x;
this.p1y = p2y;
this.p2x = p2x;
this.p2y = p2y;
}
UnitBezier.prototype.sampleCurveX = function(t) {
// `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
return ((this.ax * t + this.bx) * t + this.cx) * t;
};
UnitBezier.prototype.sampleCurveY = function(t) {
return ((this.ay * t + this.by) * t + this.cy) * t;
};
UnitBezier.prototype.sampleCurveDerivativeX = function(t) {
return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx;
};
UnitBezier.prototype.solveCurveX = function(x, epsilon) {
if (typeof epsilon === 'undefined') epsilon = 1e-6;
var t0, t1, t2, x2, i;
// First try a few iterations of Newton's method -- normally very fast.
for (t2 = x, i = 0; i < 8; i++) {
x2 = this.sampleCurveX(t2) - x;
if (Math.abs(x2) < epsilon) return t2;
var d2 = this.sampleCurveDerivativeX(t2);
if (Math.abs(d2) < 1e-6) break;
t2 = t2 - x2 / d2;
}
// Fall back to the bisection method for reliability.
t0 = 0.0;
t1 = 1.0;
t2 = x;
if (t2 < t0) return t0;
if (t2 > t1) return t1;
while (t0 < t1) {
x2 = this.sampleCurveX(t2);
if (Math.abs(x2 - x) < epsilon) return t2;
if (x > x2) {
t0 = t2;
} else {
t1 = t2;
}
t2 = (t1 - t0) * 0.5 + t0;
}
// Failure.
return t2;
};
UnitBezier.prototype.solve = function(x, epsilon) {
return this.sampleCurveY(this.solveCurveX(x, epsilon));
};