StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics
https://doi.org/10.1109/TVCG.2020.3030352
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.8 KiB
83 lines
2.8 KiB
6 years ago
|
<template>
|
||
|
<div>
|
||
|
<div id="exploding_boxplot" class="exploding_boxplot"></div>
|
||
|
</div>
|
||
|
</template>
|
||
|
|
||
|
<script>
|
||
|
import interact from 'interactjs'
|
||
|
import { EventBus } from '../main.js'
|
||
|
import * as d3Base from 'd3'
|
||
|
import * as exploding_boxplot from 'd3_exploding_boxplot'
|
||
|
|
||
|
// attach all d3 plugins to the d3 library
|
||
|
const d3 = Object.assign(d3Base)
|
||
|
|
||
|
export default {
|
||
|
name: 'Algorithms',
|
||
|
data () {
|
||
|
return {
|
||
|
PerformanceAllModels: ''
|
||
|
}
|
||
|
},
|
||
|
methods: {
|
||
|
boxplot () {
|
||
|
//generate random data
|
||
|
const PerformAlgor1 = JSON.parse(this.PerformanceAllModels[0])
|
||
|
const PerformAlgor2 = JSON.parse(this.PerformanceAllModels[1])
|
||
|
var algorithm1 = []
|
||
|
var algorithm2 = []
|
||
|
var median = []
|
||
|
var sum = 0
|
||
|
for (let i = 0; i < Object.keys(PerformAlgor1.mean_test_score).length; i++) {
|
||
|
algorithm1.push({Performance: Object.values(PerformAlgor1.mean_test_score)[i]*100,Algorithm:'KNN',Model:'Model ' + i + ', Accuracy '})
|
||
|
sum = sum + Object.values(PerformAlgor1.mean_test_score)[i]*100
|
||
|
}
|
||
|
median.push(sum/Object.keys(PerformAlgor1.mean_test_score).length)
|
||
|
sum = 0
|
||
|
for (let i = 0; i < Object.keys(PerformAlgor2.mean_test_score).length; i++) {
|
||
|
algorithm2.push({Performance: Object.values(PerformAlgor2.mean_test_score)[i]*100,Algorithm:'RF',Model:'Model ' + i + ', Accuracy '})
|
||
|
sum = sum + Object.values(PerformAlgor1.mean_test_score)[i]*100
|
||
|
}
|
||
|
var data = algorithm1.concat(algorithm2)
|
||
|
/*median.push(sum/Object.keys(PerformAlgor2.mean_test_score).length)
|
||
|
if (median[0] > median[1])
|
||
|
var data = algorithm1.concat(algorithm2)
|
||
|
else
|
||
|
var data = algorithm2.concat(algorithm1)*/
|
||
|
|
||
|
// chart(data,aes)
|
||
|
// aesthetic :
|
||
|
// y : point's value on y axis
|
||
|
// group : how to group data on x axis
|
||
|
// color : color of the point / boxplot
|
||
|
// label : displayed text in toolbox
|
||
|
var chart = exploding_boxplot(data, {y:'Performance',group:'Algorithm',color:'Algorithm',label:'Model'})
|
||
|
|
||
|
//call chart on a div
|
||
|
chart('#exploding_boxplot')
|
||
|
var el = document.getElementsByClassName('d3-exploding-boxplot boxcontent')
|
||
|
var doubleClick = document.getElementsByClassName('exploding_boxplot')
|
||
|
doubleClick[0].ondblclick = function(d) {
|
||
|
EventBus.$emit('PCPCallDB')
|
||
|
}
|
||
|
el[0].onclick = function() {
|
||
|
EventBus.$emit('PCPCall', 'KNN')
|
||
|
}
|
||
|
el[1].onclick = function() {
|
||
|
EventBus.$emit('PCPCall', 'RF')
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
mounted () {
|
||
|
EventBus.$on('emittedEventCallingAllAlgorithms', data => {
|
||
|
this.PerformanceAllModels = data})
|
||
|
EventBus.$on('emittedEventCallingAllAlgorithms', this.boxplot)
|
||
|
}
|
||
|
}
|
||
|
</script>
|
||
|
|
||
|
<style>
|
||
|
@import 'd3_exploding_boxplot/src/d3_exploding_boxplot.css';
|
||
|
</style>
|