FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1 lines
1.7 KiB
1 lines
1.7 KiB
{"duration": 14.65022587776184, "input_args": {"Data": " F3 F6_b F3+F6_b |F3-F6_b| F3xF6_b F3/F6_b F6_b/F3\n0 0.99460 1 1.99460 0.00540 0.99460 0.994600 1.005429\n1 0.99680 1 1.99680 0.00320 0.99680 0.996800 1.003210\n2 0.99690 11 11.99690 10.00310 10.96590 0.090627 11.034206\n3 0.99680 6 6.99680 5.00320 5.98080 0.166133 6.019262\n4 0.99680 3 3.99680 2.00320 2.99040 0.332267 3.009631\n... ... ... ... ... ... ... ...\n1594 0.99490 2 2.99490 1.00510 1.98980 0.497450 2.010252\n1595 0.99512 2 2.99512 1.00488 1.99024 0.497560 2.009808\n1596 0.99574 3 3.99574 2.00426 2.98722 0.331913 3.012835\n1597 0.99547 3 3.99547 2.00453 2.98641 0.331823 3.013652\n1598 0.99549 9 9.99549 8.00451 8.95941 0.110610 9.040774\n\n[1599 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}} |