FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1 lines
3.8 KiB

{"duration": 36.848369121551514, "input_args": {"Data": " F5 F12 F26_p2 F5+F12 F12+F26_p2 F5+F26_p2 F5+F12+F26_p2 |F5-F12| |F12-F26_p2| |F5-F26_p2| ... F12/F26_p2 F26_p2/F12 F5/F26_p2 F26_p2/F5 F5/F12/F26_p2 F5/F26_p2/F12 F12/F26_p2/F5 F12/F5/F26_p2 F26_p2/F5/F12 F26_p2/F12/F5\n0 2.263 9.902 23.280625 12.165 33.182625 25.543625 35.445625 7.639 13.378625 21.017625 ... 0.425332 2.351103 0.097205 10.287506 0.009817 0.009817 0.187951 0.187951 1.038932 1.038932\n1 2.194 10.054 20.811844 12.248 30.865844 23.005844 33.059844 7.860 10.757844 18.617844 ... 0.483090 2.070006 0.105421 9.485799 0.010485 0.010485 0.220187 0.220187 0.943485 0.943485\n2 2.424 10.226 24.820324 12.650 35.046324 27.244324 37.470324 7.802 14.594324 22.396324 ... 0.412001 2.427178 0.097662 10.239408 0.009550 0.009550 0.169967 0.169967 1.001311 1.001311\n3 2.690 12.353 39.891856 15.043 52.244856 42.581856 54.934856 9.663 27.538856 37.201856 ... 0.309662 3.229325 0.067432 14.829686 0.005459 0.005459 0.115116 0.115116 1.200493 1.200493\n4 2.700 12.519 40.068900 15.219 52.587900 42.768900 55.287900 9.819 27.549900 37.368900 ... 0.312437 3.200647 0.067384 14.840333 0.005383 0.005383 0.115717 0.115717 1.185425 1.185425\n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n832 2.136 9.311 20.241001 11.447 29.552001 22.377001 31.688001 7.175 10.930001 18.105001 ... 0.460007 2.173880 0.105528 9.476124 0.011334 0.011334 0.215359 0.215359 1.017734 1.017734\n833 2.222 9.668 22.877089 11.890 32.545089 25.099089 34.767089 7.446 13.209089 20.655089 ... 0.422606 2.366269 0.097128 10.295720 0.010046 0.010046 0.190192 0.190192 1.064928 1.064928\n834 2.499 10.681 28.196100 13.180 38.877100 30.695100 41.376100 8.182 17.515100 25.697100 ... 0.378811 2.639837 0.088629 11.282953 0.008298 0.008298 0.151585 0.151585 1.056357 1.056357\n835 2.361 10.735 24.770529 13.096 35.505529 27.131529 37.866529 8.374 14.035529 22.409529 ... 0.433378 2.307455 0.095315 10.491541 0.008879 0.008879 0.183557 0.183557 0.977321 0.977321\n836 2.361 10.694 24.770529 13.055 35.464529 27.131529 37.825529 8.333 14.076529 22.409529 ... 0.431723 2.316302 0.095315 10.491541 0.008913 0.008913 0.182856 0.182856 0.981068 0.981068\n\n[837 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}