FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
12 lines
693 B
12 lines
693 B
# first line: 525
|
|
@memory.cache
|
|
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
|
|
# initialize model
|
|
print('loopingVehicle')
|
|
n_estimators = int(n_estimators)
|
|
max_depth = int(max_depth)
|
|
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
|
|
# set in cross-validation
|
|
result = cross_validate(model, XData, yData, cv=crossValidation, scoring='accuracy')
|
|
# result is mean of test_score
|
|
return np.mean(result['test_score'])
|
|
|