FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1 lines
3.8 KiB

{"duration": 60.322397232055664, "input_args": {"Data": " F1_l2 F6_b F9_l10 F1_l2+F6_b F6_b+F9_l10 F1_l2+F9_l10 F1_l2+F6_b+F9_l10 |F1_l2-F6_b| ... F1_l2/F9_l10 F9_l10/F1_l2 F1_l2/F6_b/F9_l10 F1_l2/F9_l10/F6_b F6_b/F9_l10/F1_l2 F6_b/F1_l2/F9_l10 F9_l10/F1_l2/F6_b F9_l10/F6_b/F1_l2\n0 -0.621488 1 -0.327902 0.378512 0.672098 -0.949391 0.050609 1.621488 ... 1.895347 0.527608 1.895347 1.895347 4.907075 4.907075 0.527608 0.527608\n1 -0.785875 1 -0.244125 0.214125 0.755875 -1.030000 -0.030000 1.785875 ... 3.219149 0.310641 3.219149 3.219149 5.212354 5.212354 0.310641 0.310641\n2 -1.836501 11 -0.124939 9.163499 10.875061 -1.961440 9.038560 12.836501 ... 14.699214 0.068031 1.336292 1.336292 47.940697 47.940697 0.006185 0.006185\n3 -1.395929 6 -0.136677 4.604071 5.863323 -1.532606 4.467394 7.395929 ... 10.213330 0.097911 1.702222 1.702222 31.447935 31.447935 0.016319 0.016319\n4 -0.943416 3 -0.207608 2.056584 2.792392 -1.151025 1.848975 3.943416 ... 4.544213 0.220060 1.514738 1.514738 15.316977 15.316977 0.073353 0.073353\n... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 2 -0.236572 1.263034 1.763428 -0.973538 1.026462 2.736966 ... 3.115185 0.321008 1.557593 1.557593 11.471479 11.471479 0.160504 0.160504\n1595 -0.862496 2 -0.119186 1.137504 1.880814 -0.981683 1.018317 2.862496 ... 7.236534 0.138188 3.618267 3.618267 19.455659 19.455659 0.069094 0.069094\n1596 -0.971431 3 -0.124939 2.028569 2.875061 -1.096370 1.903630 3.971431 ... 7.775257 0.128613 2.591752 2.591752 24.717939 24.717939 0.042871 0.042871\n1597 -0.632629 3 -0.148742 2.367371 2.851258 -0.781371 2.218629 3.632629 ... 4.253206 0.235117 1.417735 1.417735 31.881563 31.881563 0.078372 0.078372\n1598 -1.689660 9 -0.180456 7.310340 8.819544 -1.870116 7.129884 10.689660 ... 9.363276 0.106800 1.040364 1.040364 29.516967 29.516967 0.011867 0.011867\n\n[1599 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}