FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1 lines
4.1 KiB
1 lines
4.1 KiB
{"duration": 68.68374919891357, "input_args": {"Data": " F4_p4 F15 F18_l1p F4_p4+F15 F15+F18_l1p F4_p4+F18_l1p F4_p4+F15+F18_l1p |F4_p4-F15| |F15-F18_l1p| ... F18_l1p/F15 F4_p4/F18_l1p F18_l1p/F4_p4 F4_p4/F15/F18_l1p F4_p4/F18_l1p/F15 F15/F18_l1p/F4_p4 F15/F4_p4/F18_l1p F18_l1p/F4_p4/F15 F18_l1p/F15/F4_p4\n0 3111696 20 5.940171 3111716 25.940171 3.111702e+06 3.111722e+06 3111676 14.059829 ... 0.297009 5.238394e+05 1.908982e-06 26191.972147 26191.972147 1.082016e-06 1.082016e-06 9.544909e-08 9.544909e-08\n1 4100625 19 5.802118 4100644 24.802118 4.100631e+06 4.100650e+06 4100606 13.197882 ... 0.305375 7.067462e+05 1.414935e-06 37197.167389 37197.167389 7.985773e-07 7.985773e-07 7.447027e-08 7.447027e-08\n2 4477456 19 5.736572 4477475 24.736572 4.477462e+06 4.477481e+06 4477437 13.263428 ... 0.301925 7.805107e+05 1.281212e-06 41079.509980 41079.509980 7.397242e-07 7.397242e-07 6.743223e-08 6.743223e-08\n3 5308416 18 5.641907 5308434 23.641907 5.308422e+06 5.308440e+06 5308398 12.358093 ... 0.313439 9.408904e+05 1.062823e-06 52271.686912 52271.686912 6.010099e-07 6.010099e-07 5.904573e-08 5.904573e-08\n4 8503056 17 5.411646 8503073 22.411646 8.503061e+06 8.503078e+06 8503039 11.588354 ... 0.318332 1.571251e+06 6.364354e-07 92426.548210 92426.548210 3.694405e-07 3.694405e-07 3.743738e-08 3.743738e-08\n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n841 4100625 19 5.789960 4100644 24.789960 4.100631e+06 4.100650e+06 4100606 13.210040 ... 0.304735 7.082303e+05 1.411970e-06 37275.276867 37275.276867 8.002542e-07 8.002542e-07 7.431422e-08 7.431422e-08\n842 4100625 19 5.817111 4100644 24.817111 4.100631e+06 4.100650e+06 4100606 13.182889 ... 0.306164 7.049246e+05 1.418591e-06 37101.296930 37101.296930 7.965191e-07 7.965191e-07 7.466270e-08 7.466270e-08\n843 3418801 19 5.849325 3418820 24.849325 3.418807e+06 3.418826e+06 3418782 13.150675 ... 0.307859 5.844779e+05 1.710929e-06 30761.994163 30761.994163 9.501103e-07 9.501103e-07 9.004888e-08 9.004888e-08\n844 2560000 20 6.008813 2560020 26.008813 2.560006e+06 2.560026e+06 2559980 13.991187 ... 0.300441 4.260409e+05 2.347193e-06 21302.043523 21302.043523 1.300174e-06 1.300174e-06 1.173596e-07 1.173596e-07\n845 456976 29 6.926577 457005 35.926577 4.569829e+05 4.570119e+05 456947 22.073423 ... 0.238847 6.597429e+04 1.515742e-05 2274.975508 2274.975508 9.161908e-06 9.161908e-06 5.226696e-07 5.226696e-07\n\n[846 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}} |