FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1 lines
3.9 KiB
1 lines
3.9 KiB
{"duration": 58.0562629699707, "input_args": {"Data": " F2 F8_l2 F12 F2+F8_l2 F8_l2+F12 F2+F12 F2+F8_l2+F12 |F2-F8_l2| |F8_l2-F12| |F2-F12| |F2-F8_l2-F12| ... F8_l2/F2 F8_l2/F12 F12/F8_l2 F2/F12 F12/F2 F2/F8_l2/F12 F2/F12/F8_l2 F8_l2/F12/F2 F8_l2/F2/F12 F12/F2/F8_l2 F12/F8_l2/F2\n0 9.085 1.864731 9.902 10.949731 11.766731 18.987 20.851731 7.220269 8.037269 0.817 2.681731 ... 0.205254 0.188319 5.310150 0.917491 1.089928 0.492023 0.492023 0.020729 0.020729 0.584496 0.584496\n1 8.179 1.818032 10.054 9.997032 11.872032 18.233 20.051032 6.360968 8.235968 1.875 3.693032 ... 0.222281 0.180827 5.530154 0.813507 1.229246 0.447466 0.447466 0.022109 0.022109 0.676141 0.676141\n2 8.297 1.739416 10.226 10.036416 11.965416 18.523 20.262416 6.557584 8.486584 1.929 3.668416 ... 0.209644 0.170097 5.878984 0.811363 1.232494 0.466457 0.466457 0.020501 0.020501 0.708567 0.708567\n3 9.673 2.215679 12.353 11.888679 14.568679 22.026 24.241679 7.457321 10.137321 2.680 4.895679 ... 0.229058 0.179364 5.575267 0.783049 1.277060 0.353413 0.353413 0.018543 0.018543 0.576374 0.576374\n4 9.825 2.261531 12.519 12.086531 14.780531 22.344 24.605531 7.563469 10.257469 2.694 4.955531 ... 0.230181 0.180648 5.535631 0.784807 1.274198 0.347025 0.347025 0.018387 0.018387 0.563423 0.563423\n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n832 7.878 1.580145 9.311 9.458145 10.891145 17.189 18.769145 6.297855 7.730855 1.433 3.013145 ... 0.200577 0.169707 5.892495 0.846096 1.181899 0.535455 0.535455 0.021542 0.021542 0.747968 0.747968\n833 8.046 1.634593 9.668 9.680593 11.302593 17.714 19.348593 6.411407 8.033407 1.622 3.256593 ... 0.203156 0.169073 5.914621 0.832230 1.201591 0.509136 0.509136 0.021013 0.021013 0.735101 0.735101\n834 8.901 1.904966 10.681 10.805966 12.585966 19.582 21.486966 6.996034 8.776034 1.780 3.684966 ... 0.214017 0.178351 5.606925 0.833349 1.199978 0.437461 0.437461 0.020037 0.020037 0.629921 0.629921\n835 8.778 2.070733 10.735 10.848733 12.805733 19.513 21.583733 6.707267 8.664267 1.957 4.027733 ... 0.235900 0.192895 5.184155 0.817699 1.222944 0.394884 0.394884 0.021975 0.021975 0.590585 0.590585\n836 8.680 2.045093 10.694 10.725093 12.739093 19.374 21.419093 6.634907 8.648907 2.014 4.059093 ... 0.235610 0.191237 5.229101 0.811670 1.232028 0.396887 0.396887 0.022032 0.022032 0.602431 0.602431\n\n[837 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}} |