FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1 lines
2.1 KiB

{"duration": 8.25429081916809, "input_args": {"Data": " F5_em1 F26_p4 F5_em1+F26_p4 |F5_em1-F26_p4| F5_em1xF26_p4 F5_em1/F26_p4 F26_p4/F5_em1\n0 8.611882 541.987500 550.599382 533.375619 4667.532183 0.015889 62.934853\n1 7.971026 433.132851 441.103876 425.161825 3452.513017 0.018403 54.338410\n2 10.290933 616.048483 626.339416 605.757551 6339.713569 0.016705 59.863230\n3 13.731676 1591.360175 1605.091851 1577.628499 21852.042198 0.008629 115.889727\n4 13.879732 1605.516747 1619.396479 1591.637015 22284.141731 0.008645 115.673471\n.. ... ... ... ... ... ... ...\n832 7.465508 409.698121 417.163629 402.232614 3058.604515 0.018222 54.878802\n833 8.225764 523.361201 531.586965 515.135437 4305.045703 0.015717 63.624632\n834 11.170318 795.020055 806.190373 783.849738 8880.626480 0.014050 71.172556\n835 9.601548 613.579107 623.180655 603.977559 5891.309064 0.015648 63.904188\n836 9.601548 613.579107 623.180655 603.977559 5891.309064 0.015648 63.904188\n\n[837 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}