FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1 lines
3.9 KiB
1 lines
3.9 KiB
{"duration": 65.87499213218689, "input_args": {"Data": " F5 F12 F26_p4 F5+F12 F12+F26_p4 F5+F26_p4 F5+F12+F26_p4 |F5-F12| |F12-F26_p4| |F5-F26_p4| ... F12/F26_p4 F26_p4/F12 F5/F26_p4 F26_p4/F5 F5/F12/F26_p4 F5/F26_p4/F12 F12/F26_p4/F5 F12/F5/F26_p4 F26_p4/F5/F12 F26_p4/F12/F5\n0 2.263 9.902 541.987500 12.165 551.889500 544.250500 554.152500 7.639 532.085500 539.724500 ... 0.018270 54.735155 0.004175 239.499558 0.000422 0.000422 0.008073 0.008073 24.186988 24.186988\n1 2.194 10.054 433.132851 12.248 443.186851 435.326851 445.380851 7.860 423.078851 430.938851 ... 0.023212 43.080650 0.005065 197.416978 0.000504 0.000504 0.010580 0.010580 19.635665 19.635665\n2 2.424 10.226 616.048483 12.650 626.274483 618.472483 628.698483 7.802 605.822483 613.624483 ... 0.016599 60.243349 0.003935 254.145414 0.000385 0.000385 0.006848 0.006848 24.852867 24.852867\n3 2.690 12.353 1591.360175 15.043 1603.713175 1594.050175 1606.403175 9.663 1579.007175 1588.670175 ... 0.007763 128.823782 0.001690 591.583708 0.000137 0.000137 0.002886 0.002886 47.889882 47.889882\n4 2.700 12.519 1605.516747 15.219 1618.035747 1608.216747 1620.735747 9.819 1592.997747 1602.816747 ... 0.007797 128.246405 0.001682 594.635832 0.000134 0.000134 0.002888 0.002888 47.498669 47.498669\n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n832 2.136 9.311 409.698121 11.447 419.009121 411.834121 421.145121 7.175 400.387121 407.562121 ... 0.022726 44.001517 0.005214 191.806237 0.000560 0.000560 0.010640 0.010640 20.599961 20.599961\n833 2.222 9.668 523.361201 11.890 533.029201 525.583201 535.251201 7.446 513.693201 521.139201 ... 0.018473 54.133347 0.004246 235.536094 0.000439 0.000439 0.008314 0.008314 24.362443 24.362443\n834 2.499 10.681 795.020055 13.180 805.701055 797.519055 808.200055 8.182 784.339055 792.521055 ... 0.013435 74.433111 0.003143 318.135276 0.000294 0.000294 0.005376 0.005376 29.785158 29.785158\n835 2.361 10.735 613.579107 13.096 624.314107 615.940107 626.675107 8.374 602.844107 611.218107 ... 0.017496 57.156880 0.003848 259.881028 0.000358 0.000358 0.007410 0.007410 24.208759 24.208759\n836 2.361 10.694 613.579107 13.055 624.273107 615.940107 626.634107 8.333 602.885107 611.218107 ... 0.017429 57.376015 0.003848 259.881028 0.000360 0.000360 0.007382 0.007382 24.301574 24.301574\n\n[837 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}} |