FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1 lines
3.4 KiB

{"duration": 73.11097693443298, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15\n0 8.866140e+01 7.388208e+01 8.127810e+01 8.866425e+01 8.126757e+01 7.387707e+01 7.390777e+01 8.129647e+01 8.868477e+01 7.390199e+01 7.389997e+01 7.389792e+01 8.867498e+01 7.389366e+01 7.389144e+01\n1 3.803779e+06 3.187643e+06 3.121268e+06 3.055115e+06 3.114669e+06 2.788040e+06 3.363240e+06 3.637120e+06 3.574171e+06 3.510740e+06 3.446845e+06 3.382511e+06 3.317761e+06 2.956926e+06 2.897374e+06\n2 1.637687e+01 1.965156e+01 1.801576e+01 1.965290e+01 2.128843e+01 1.801264e+01 1.965878e+01 1.802006e+01 2.129585e+01 2.129525e+01 1.965659e+01 1.638001e+01 1.801747e+01 1.801691e+01 1.637849e+01\n3 4.354273e+06 3.608082e+06 4.402088e+06 3.648666e+06 3.587229e+06 3.922595e+06 4.213350e+06 5.339138e+06 4.176369e+06 3.779396e+06 4.137938e+06 4.492544e+06 3.725468e+06 4.448163e+06 4.056561e+06\n4 2.482894e+05 2.203778e+05 2.363641e+05 2.541521e+05 2.150309e+05 2.306477e+05 3.115381e+05 3.059394e+05 2.730031e+05 3.214171e+05 3.151945e+05 2.574489e+05 2.522101e+05 2.469481e+05 2.416652e+05\n.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n71 1.162888e+04 1.150006e+04 1.307725e+04 1.293417e+04 1.478360e+04 1.236923e+04 1.307989e+04 1.294569e+04 1.409322e+04 1.267879e+04 1.254598e+04 1.241360e+04 1.596612e+04 1.336510e+04 1.201901e+04\n72 3.247625e+04 2.921291e+04 3.015824e+04 3.282285e+04 3.179657e+04 3.432353e+04 3.655821e+04 3.287416e+04 3.577027e+04 4.503425e+04 3.182106e+04 3.147942e+04 3.425658e+04 3.389083e+04 3.048184e+04\n73 2.295529e+05 2.292503e+05 2.301399e+05 2.298496e+05 2.497538e+05 2.078410e+05 2.113555e+05 2.533655e+05 2.109155e+05 2.317572e+05 2.104563e+05 2.522628e+05 2.309743e+05 2.516750e+05 2.723193e+05\n74 3.220842e+05 2.896772e+05 3.590173e+05 3.255688e+05 2.865908e+05 2.835442e+05 4.289280e+05 3.263613e+05 3.551004e+05 4.151117e+05 3.474417e+05 3.436810e+05 3.399661e+05 3.362976e+05 3.326751e+05\n75 8.877963e+04 8.791577e+04 8.227373e+04 1.059400e+05 9.496402e+04 7.834895e+04 8.915909e+04 1.060929e+05 8.765758e+04 8.689984e+04 1.119792e+05 9.390905e+04 1.099828e+05 9.221187e+04 9.135802e+04\n\n[76 rows x 15 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9544489538593315,\n eta=0.0996789203835431, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0996789187, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=164, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.9413714687695234, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}