FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
				https://doi.org/10.1109/TVCG.2022.3141040
			
			
		
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							12 lines
						
					
					
						
							690 B
						
					
					
				
			
		
		
	
	
							12 lines
						
					
					
						
							690 B
						
					
					
				| # first line: 600
 | |
|     @memory.cache
 | |
|     def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
 | |
|         # initialize model
 | |
|         print('loopingQSAR')
 | |
|         n_estimators = int(n_estimators)
 | |
|         max_depth = int(max_depth)
 | |
|         model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
 | |
|         # set in cross-validation
 | |
|         result = cross_validate(model, XData, yData, cv=crossValidation, scoring='accuracy')
 | |
|         # result is mean of test_score
 | |
|         return np.mean(result['test_score'])
 | |
| 
 |