parent 94576e41f9
commit bafeaecbe1
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. 2
      cachedir/joblib/run/estimator/07007f7dca9bdfd648d3542e509afb89/metadata.json
  3. BIN
      cachedir/joblib/run/estimator/07007f7dca9bdfd648d3542e509afb89/output.pkl
  4. 1
      cachedir/joblib/run/estimator/25b4ca0245787f8f861a32778e868901/metadata.json
  5. 2
      cachedir/joblib/run/estimator/2d3aa4b9a7a5e05fecd214f13f35c2f6/metadata.json
  6. BIN
      cachedir/joblib/run/estimator/2d3aa4b9a7a5e05fecd214f13f35c2f6/output.pkl
  7. 1
      cachedir/joblib/run/estimator/3e39bc61e5d32214dbfb09418b17d489/metadata.json
  8. 1
      cachedir/joblib/run/estimator/49b09e262e319b7bfb24ff4a0ac5c3f5/metadata.json
  9. BIN
      cachedir/joblib/run/estimator/49b09e262e319b7bfb24ff4a0ac5c3f5/output.pkl
  10. 2
      cachedir/joblib/run/estimator/501c8577828b16d7edbbaa0c4c50298a/metadata.json
  11. BIN
      cachedir/joblib/run/estimator/501c8577828b16d7edbbaa0c4c50298a/output.pkl
  12. 2
      cachedir/joblib/run/estimator/53c192c9764e2921d7ee2543dca13d78/metadata.json
  13. BIN
      cachedir/joblib/run/estimator/53c192c9764e2921d7ee2543dca13d78/output.pkl
  14. 2
      cachedir/joblib/run/estimator/6090fba618ef6aae9c62af2152c10831/metadata.json
  15. BIN
      cachedir/joblib/run/estimator/6090fba618ef6aae9c62af2152c10831/output.pkl
  16. 1
      cachedir/joblib/run/estimator/61cc762b5a9bd4586cee079d6c1a7776/metadata.json
  17. BIN
      cachedir/joblib/run/estimator/61cc762b5a9bd4586cee079d6c1a7776/output.pkl
  18. 2
      cachedir/joblib/run/estimator/65ad99c302a3e6128ffd21fb73ff7858/metadata.json
  19. BIN
      cachedir/joblib/run/estimator/65ad99c302a3e6128ffd21fb73ff7858/output.pkl
  20. 1
      cachedir/joblib/run/estimator/68528debde2113dac0b069dc3ab767b4/metadata.json
  21. BIN
      cachedir/joblib/run/estimator/68528debde2113dac0b069dc3ab767b4/output.pkl
  22. 1
      cachedir/joblib/run/estimator/7b6a78563e5e8041baad07d84d667dd1/metadata.json
  23. BIN
      cachedir/joblib/run/estimator/7b6a78563e5e8041baad07d84d667dd1/output.pkl
  24. 1
      cachedir/joblib/run/estimator/7bb9a6ed4f9c4665154bf105b6bc49d2/metadata.json
  25. BIN
      cachedir/joblib/run/estimator/7bb9a6ed4f9c4665154bf105b6bc49d2/output.pkl
  26. 2
      cachedir/joblib/run/estimator/878e230e8d668ff8bf9ae658973cf276/metadata.json
  27. BIN
      cachedir/joblib/run/estimator/878e230e8d668ff8bf9ae658973cf276/output.pkl
  28. 2
      cachedir/joblib/run/estimator/8dbc0d7097e6aca21bb30a8dc860f045/metadata.json
  29. BIN
      cachedir/joblib/run/estimator/8dbc0d7097e6aca21bb30a8dc860f045/output.pkl
  30. 2
      cachedir/joblib/run/estimator/96ba12b58138896ed090735e777c34ba/metadata.json
  31. BIN
      cachedir/joblib/run/estimator/96ba12b58138896ed090735e777c34ba/output.pkl
  32. 2
      cachedir/joblib/run/estimator/9d6d5c57facf6580e27ecc5ac3a9da74/metadata.json
  33. BIN
      cachedir/joblib/run/estimator/9d6d5c57facf6580e27ecc5ac3a9da74/output.pkl
  34. 2
      cachedir/joblib/run/estimator/b8a9b059b71e375385bcb3affc80aaae/metadata.json
  35. BIN
      cachedir/joblib/run/estimator/b8a9b059b71e375385bcb3affc80aaae/output.pkl
  36. 2
      cachedir/joblib/run/estimator/bd6da16bc4f265fe52537fa5b2e84845/metadata.json
  37. BIN
      cachedir/joblib/run/estimator/bd6da16bc4f265fe52537fa5b2e84845/output.pkl
  38. 2
      cachedir/joblib/run/estimator/c5ae132fa788a41769fd65f6ea6fc878/metadata.json
  39. BIN
      cachedir/joblib/run/estimator/c5ae132fa788a41769fd65f6ea6fc878/output.pkl
  40. 2
      cachedir/joblib/run/estimator/c78d75f852ea2ac732cd2c4d8cf5e3e3/metadata.json
  41. BIN
      cachedir/joblib/run/estimator/c78d75f852ea2ac732cd2c4d8cf5e3e3/output.pkl
  42. 2
      cachedir/joblib/run/estimator/d7a4fed50ef206c00c730c9b2e013bcb/metadata.json
  43. BIN
      cachedir/joblib/run/estimator/d7a4fed50ef206c00c730c9b2e013bcb/output.pkl
  44. 1
      cachedir/joblib/run/estimator/e4ed322c7348967a87d404da78936ef6/metadata.json
  45. 2
      cachedir/joblib/run/estimator/e5b137b59fcad7738516be11e783d76d/metadata.json
  46. BIN
      cachedir/joblib/run/estimator/e5b137b59fcad7738516be11e783d76d/output.pkl
  47. 2
      cachedir/joblib/run/estimator/e907a73e538f95a05e43901c7239d26f/metadata.json
  48. BIN
      cachedir/joblib/run/estimator/e907a73e538f95a05e43901c7239d26f/output.pkl
  49. 2
      cachedir/joblib/run/estimator/ecc4f427737ec1d8fd0403c51e99091c/metadata.json
  50. BIN
      cachedir/joblib/run/estimator/ecc4f427737ec1d8fd0403c51e99091c/output.pkl
  51. 2
      cachedir/joblib/run/estimator/f1d92e5f2a3bd05ecb2416c00ab93942/metadata.json
  52. BIN
      cachedir/joblib/run/estimator/f1d92e5f2a3bd05ecb2416c00ab93942/output.pkl
  53. 1
      cachedir/joblib/run/estimator/f3a05fd0f610f6b4476dedeade21eb2d/metadata.json
  54. 2
      cachedir/joblib/run/estimator/f636511a768ea642182097d47d727cb3/metadata.json
  55. BIN
      cachedir/joblib/run/estimator/f636511a768ea642182097d47d727cb3/output.pkl
  56. 1
      cachedir/joblib/run/estimator/f711c74235d9de3e98bcceeac842befd/metadata.json
  57. BIN
      cachedir/joblib/run/estimator/f711c74235d9de3e98bcceeac842befd/output.pkl
  58. 2
      cachedir/joblib/run/estimator/func_code.py
  59. BIN
      cachedir/joblib/run/estimatorFeatureSelection/1c4353e412fa2d5faad7cd95e060ac0b/output.pkl
  60. 1
      cachedir/joblib/run/estimatorFeatureSelection/1edf0aab1322bad6d8bc1faf9d99ec87/metadata.json
  61. BIN
      cachedir/joblib/run/estimatorFeatureSelection/2956fe3fc2ead99c0e75e9a3188d9e47/output.pkl
  62. BIN
      cachedir/joblib/run/estimatorFeatureSelection/2a5cb0dc93c4d28175bea04aba90196b/output.pkl
  63. 1
      cachedir/joblib/run/estimatorFeatureSelection/5c6d9ec9ebd0c96ad37bcece2a7b1ab1/metadata.json
  64. 1
      cachedir/joblib/run/estimatorFeatureSelection/5fa740243b273457bc3baef8701c08b7/metadata.json
  65. BIN
      cachedir/joblib/run/estimatorFeatureSelection/6cb9aa4d3e4f65304fcd4f4b64757ac2/output.pkl
  66. BIN
      cachedir/joblib/run/estimatorFeatureSelection/72ac4adfa3e5cbdd57bcba63418bbace/output.pkl
  67. BIN
      cachedir/joblib/run/estimatorFeatureSelection/852f5fe81bc428cab22095be92192a5c/output.pkl
  68. BIN
      cachedir/joblib/run/estimatorFeatureSelection/865129580f2bc6313d43c3eaa2508859/output.pkl
  69. BIN
      cachedir/joblib/run/estimatorFeatureSelection/8d66193a7ba095faff205c012207db3c/output.pkl
  70. BIN
      cachedir/joblib/run/estimatorFeatureSelection/9173db70f31731fbdf1173f7bfac5f22/output.pkl
  71. BIN
      cachedir/joblib/run/estimatorFeatureSelection/918a327121a85ee1502fabcb8cdec070/output.pkl
  72. BIN
      cachedir/joblib/run/estimatorFeatureSelection/91b50267764e2552f0cdff439b5bdb65/output.pkl
  73. BIN
      cachedir/joblib/run/estimatorFeatureSelection/99a2ef44d6ed0bf80fcac97f871cae22/output.pkl
  74. 1
      cachedir/joblib/run/estimatorFeatureSelection/9bb8074ec6b631e352538287bdfa0b0a/metadata.json
  75. 1
      cachedir/joblib/run/estimatorFeatureSelection/9cfb8bb7fc51dc943ddd76f4f567f229/metadata.json
  76. BIN
      cachedir/joblib/run/estimatorFeatureSelection/b5b59f6f9f040de1b845445c8e9d6cfd/output.pkl
  77. BIN
      cachedir/joblib/run/estimatorFeatureSelection/bade202365fdac1f763303395214a2bb/output.pkl
  78. BIN
      cachedir/joblib/run/estimatorFeatureSelection/bcdda21b04a1e2356647fd47a6a5b1cc/output.pkl
  79. 1
      cachedir/joblib/run/estimatorFeatureSelection/bdd807c5f0ea9d506784044cc715fea4/metadata.json
  80. 1
      cachedir/joblib/run/estimatorFeatureSelection/c1b8be511e9a8599714fe6a780347fd0/metadata.json
  81. BIN
      cachedir/joblib/run/estimatorFeatureSelection/d349bda868eae5bd848661230b005e24/output.pkl
  82. BIN
      cachedir/joblib/run/estimatorFeatureSelection/d3f08122b6e931fba4fb58840fb485a2/output.pkl
  83. 1
      cachedir/joblib/run/estimatorFeatureSelection/d7ba7e4f73aab0f3f46d8930988f7af2/metadata.json
  84. BIN
      cachedir/joblib/run/estimatorFeatureSelection/e0270cf03b5a40ac128a8cc275ed56af/output.pkl
  85. 1
      cachedir/joblib/run/estimatorFeatureSelection/e8dffeaa3cab0e986513f7194a282bce/metadata.json
  86. BIN
      cachedir/joblib/run/estimatorFeatureSelection/e8dffeaa3cab0e986513f7194a282bce/output.pkl
  87. 1
      cachedir/joblib/run/estimatorFeatureSelection/ee3aaf15c216be57aa4f78a295113ee9/metadata.json
  88. BIN
      cachedir/joblib/run/estimatorFeatureSelection/f7b6ea1cd57f1209379e2fe2cc74b386/output.pkl
  89. 1
      cachedir/joblib/run/estimatorFeatureSelection/ffcfeece26d8684e0ea24c2611359d2b/metadata.json
  90. 7
      frontend/src/components/Main.vue
  91. 2
      run.py

Binary file not shown.

@ -1 +1 @@
{"duration": 1.3943150043487549, "input_args": {"n_estimators": "74.90081706613316", "eta": "0.24281758667148645", "max_depth": "6.444267910404542", "subsample": "0.823173811905026", "colsample_bytree": "0.9458014336081975"}}
{"duration": 0.445972204208374, "input_args": {"n_estimators": "74.90081706613316", "eta": "0.24281758667148645", "max_depth": "6.444267910404542", "subsample": "0.823173811905026", "colsample_bytree": "0.9458014336081975"}}

@ -1 +0,0 @@
{"duration": 5.069570064544678, "input_args": {"n_estimators": "166.5474027620548", "eta": "0.050400330952768344", "max_depth": "11.980222535313743", "subsample": "0.9982340891007953", "colsample_bytree": "0.8542949699823068"}}

@ -1 +1 @@
{"duration": 0.3925189971923828, "input_args": {"n_estimators": "13.819321337554923", "eta": "0.07212312551297988", "max_depth": "7.175897174514871", "subsample": "0.8650660661526529", "colsample_bytree": "0.9843748470046234"}}
{"duration": 0.24505186080932617, "input_args": {"n_estimators": "13.819321337554923", "eta": "0.07212312551297988", "max_depth": "7.175897174514871", "subsample": "0.8650660661526529", "colsample_bytree": "0.9843748470046234"}}

@ -1 +0,0 @@
{"duration": 2.5982677936553955, "input_args": {"n_estimators": "172.49319703423618", "eta": "0.3", "max_depth": "11.956219561804252", "subsample": "0.9002699436157899", "colsample_bytree": "0.8"}}

@ -0,0 +1 @@
{"duration": 0.840461015701294, "input_args": {"n_estimators": "89.20416101025876", "eta": "0.298254354073293", "max_depth": "11.531170050483237", "subsample": "0.8631047353903125", "colsample_bytree": "0.8937180539904231"}}

@ -1 +1 @@
{"duration": 2.650658130645752, "input_args": {"n_estimators": "121.73840441842214", "eta": "0.28767857660247903", "max_depth": "10.39196365086843", "subsample": "0.8312037280884873", "colsample_bytree": "0.8749080237694725"}}
{"duration": 0.9199130535125732, "input_args": {"n_estimators": "121.73840441842214", "eta": "0.28767857660247903", "max_depth": "10.39196365086843", "subsample": "0.8312037280884873", "colsample_bytree": "0.8749080237694725"}}

@ -1 +1 @@
{"duration": 2.5463922023773193, "input_args": {"n_estimators": "182.3174784053625", "eta": "0.17379422752781754", "max_depth": "6.20633112669131", "subsample": "0.8517559963200034", "colsample_bytree": "0.8244076469689559"}}
{"duration": 2.4921109676361084, "input_args": {"n_estimators": "182.3174784053625", "eta": "0.17379422752781754", "max_depth": "6.20633112669131", "subsample": "0.8517559963200034", "colsample_bytree": "0.8244076469689559"}}

@ -1 +1 @@
{"duration": 3.295583963394165, "input_args": {"n_estimators": "114.44905352605177", "eta": "0.22831119680574874", "max_depth": "10.564710291701385", "subsample": "0.9541934359909122", "colsample_bytree": "0.8239188491876603"}}
{"duration": 0.7512750625610352, "input_args": {"n_estimators": "114.44905352605177", "eta": "0.22831119680574874", "max_depth": "10.564710291701385", "subsample": "0.9541934359909122", "colsample_bytree": "0.8239188491876603"}}

@ -0,0 +1 @@
{"duration": 1.6831128597259521, "input_args": {"n_estimators": "185.43130710367382", "eta": "0.07633917613590695", "max_depth": "6.883647273396065", "subsample": "0.9541408808296614", "colsample_bytree": "0.9812765080381792"}}

@ -1 +1 @@
{"duration": 1.2244741916656494, "input_args": {"n_estimators": "46.40612658226385", "eta": "0.2924774630404986", "max_depth": "10.99465584480253", "subsample": "0.8363649934414201", "colsample_bytree": "0.8041168988591605"}}
{"duration": 0.8074049949645996, "input_args": {"n_estimators": "46.40612658226385", "eta": "0.2924774630404986", "max_depth": "10.99465584480253", "subsample": "0.8363649934414201", "colsample_bytree": "0.8041168988591605"}}

@ -0,0 +1 @@
{"duration": 0.9398980140686035, "input_args": {"n_estimators": "57.427799444575626", "eta": "0.0939475479410324", "max_depth": "7.900373700039049", "subsample": "0.9451773493842789", "colsample_bytree": "0.9615101551425086"}}

@ -0,0 +1 @@
{"duration": 1.448106050491333, "input_args": {"n_estimators": "167.24441970961547", "eta": "0.22277938316283252", "max_depth": "7.548261010130628", "subsample": "0.9219628477814731", "colsample_bytree": "0.8774212362335956"}}

@ -0,0 +1 @@
{"duration": 0.3969099521636963, "input_args": {"n_estimators": "25.38275875171714", "eta": "0.06194579800544693", "max_depth": "6.214846370130013", "subsample": "0.846639951990341", "colsample_bytree": "0.9168007862570122"}}

@ -1 +1 @@
{"duration": 2.3453609943389893, "input_args": {"n_estimators": "89.22927863521258", "eta": "0.12606056073988442", "max_depth": "9.148538589793427", "subsample": "0.8582458280396084", "colsample_bytree": "0.8366809019706868"}}
{"duration": 1.7156198024749756, "input_args": {"n_estimators": "89.22927863521258", "eta": "0.12606056073988442", "max_depth": "9.148538589793427", "subsample": "0.8582458280396084", "colsample_bytree": "0.8366809019706868"}}

@ -1 +1 @@
{"duration": 2.071702003479004, "input_args": {"n_estimators": "74.56689870524991", "eta": "0.11783725794347398", "max_depth": "10.972425054911575", "subsample": "0.8561869019374762", "colsample_bytree": "0.8777354579378964"}}
{"duration": 0.6619899272918701, "input_args": {"n_estimators": "74.56689870524991", "eta": "0.11783725794347398", "max_depth": "10.972425054911575", "subsample": "0.8561869019374762", "colsample_bytree": "0.8777354579378964"}}

@ -1 +1 @@
{"duration": 0.6976380348205566, "input_args": {"n_estimators": "17.393878305774606", "eta": "0.20582453170688947", "max_depth": "7.985388149115895", "subsample": "0.8621964643431325", "colsample_bytree": "0.9726206851751187"}}
{"duration": 0.19493722915649414, "input_args": {"n_estimators": "17.393878305774606", "eta": "0.20582453170688947", "max_depth": "7.985388149115895", "subsample": "0.8621964643431325", "colsample_bytree": "0.9726206851751187"}}

@ -1 +1 @@
{"duration": 3.0700769424438477, "input_args": {"n_estimators": "179.4913333333915", "eta": "0.24378320584027863", "max_depth": "11.636993649385134", "subsample": "0.919579995762217", "colsample_bytree": "0.9939169255529117"}}
{"duration": 1.4896700382232666, "input_args": {"n_estimators": "179.4913333333915", "eta": "0.24378320584027863", "max_depth": "11.636993649385134", "subsample": "0.919579995762217", "colsample_bytree": "0.9939169255529117"}}

@ -1 +1 @@
{"duration": 2.545977830886841, "input_args": {"n_estimators": "138.4254401698706", "eta": "0.1261534422933427", "max_depth": "6.586032684038303", "subsample": "0.8880304987479203", "colsample_bytree": "0.9616794696232922"}}
{"duration": 2.3435099124908447, "input_args": {"n_estimators": "138.4254401698706", "eta": "0.1261534422933427", "max_depth": "6.586032684038303", "subsample": "0.8880304987479203", "colsample_bytree": "0.9616794696232922"}}

@ -1 +1 @@
{"duration": 2.421952962875366, "input_args": {"n_estimators": "120.52084092809828", "eta": "0.09991844553958994", "max_depth": "9.08540663048167", "subsample": "0.8092900825439996", "colsample_bytree": "0.9570351922786027"}}
{"duration": 2.5639889240264893, "input_args": {"n_estimators": "120.52084092809828", "eta": "0.09991844553958994", "max_depth": "9.08540663048167", "subsample": "0.8092900825439996", "colsample_bytree": "0.9570351922786027"}}

@ -1 +1 @@
{"duration": 5.754271984100342, "input_args": {"n_estimators": "164.01497854869265", "eta": "0.0996789203835431", "max_depth": "6.033132702741614", "subsample": "0.9413714687695234", "colsample_bytree": "0.9544489538593315"}}
{"duration": 1.0486700534820557, "input_args": {"n_estimators": "164.01497854869265", "eta": "0.0996789203835431", "max_depth": "6.033132702741614", "subsample": "0.9413714687695234", "colsample_bytree": "0.9544489538593315"}}

@ -1 +1 @@
{"duration": 3.1356942653656006, "input_args": {"n_estimators": "178.00648480238368", "eta": "0.232401544584516", "max_depth": "9.825344828131279", "subsample": "0.8944429850323898", "colsample_bytree": "0.8650366644053494"}}
{"duration": 0.867225170135498, "input_args": {"n_estimators": "178.00648480238368", "eta": "0.232401544584516", "max_depth": "9.825344828131279", "subsample": "0.8944429850323898", "colsample_bytree": "0.8650366644053494"}}

@ -1 +1 @@
{"duration": 2.6464250087738037, "input_args": {"n_estimators": "111.60850447193953", "eta": "0.12792776902235276", "max_depth": "9.120408127066865", "subsample": "0.8369708911051055", "colsample_bytree": "0.9325044568707964"}}
{"duration": 0.880241870880127, "input_args": {"n_estimators": "111.60850447193953", "eta": "0.12792776902235276", "max_depth": "9.120408127066865", "subsample": "0.8369708911051055", "colsample_bytree": "0.9325044568707964"}}

@ -1 +0,0 @@
{"duration": 2.8645551204681396, "input_args": {"n_estimators": "104.7411734315532", "eta": "0.05", "max_depth": "6.001102182596818", "subsample": "0.8", "colsample_bytree": "1.0"}}

@ -1 +1 @@
{"duration": 3.4205880165100098, "input_args": {"n_estimators": "190.03267976439997", "eta": "0.09263103092182289", "max_depth": "6.390309557911677", "subsample": "0.9931264066149119", "colsample_bytree": "0.9215089703802877"}}
{"duration": 3.4960217475891113, "input_args": {"n_estimators": "190.03267976439997", "eta": "0.09263103092182289", "max_depth": "6.390309557911677", "subsample": "0.9931264066149119", "colsample_bytree": "0.9215089703802877"}}

@ -1 +1 @@
{"duration": 1.844560146331787, "input_args": {"n_estimators": "76.44055944226989", "eta": "0.08487346516301046", "max_depth": "7.752867891211309", "subsample": "0.8912139968434072", "colsample_bytree": "0.9223705789444759"}}
{"duration": 1.6984941959381104, "input_args": {"n_estimators": "76.44055944226989", "eta": "0.08487346516301046", "max_depth": "7.752867891211309", "subsample": "0.8912139968434072", "colsample_bytree": "0.9223705789444759"}}

@ -1 +1 @@
{"duration": 0.32785892486572266, "input_args": {"n_estimators": "9.956729715098561", "eta": "0.18068320734549853", "max_depth": "8.565246110151298", "subsample": "0.821578285398661", "colsample_bytree": "0.8987591192728782"}}
{"duration": 0.17142605781555176, "input_args": {"n_estimators": "9.956729715098561", "eta": "0.18068320734549853", "max_depth": "8.565246110151298", "subsample": "0.821578285398661", "colsample_bytree": "0.8987591192728782"}}

@ -1 +1 @@
{"duration": 0.9457027912139893, "input_args": {"n_estimators": "19.53737551755531", "eta": "0.08523105624369066", "max_depth": "10.813181884524237", "subsample": "0.9973773873201035", "colsample_bytree": "0.9085392166316497"}}
{"duration": 0.35938477516174316, "input_args": {"n_estimators": "19.53737551755531", "eta": "0.08523105624369066", "max_depth": "10.813181884524237", "subsample": "0.9973773873201035", "colsample_bytree": "0.9085392166316497"}}

@ -1 +0,0 @@
{"duration": 1.8966717720031738, "input_args": {"n_estimators": "69.63591316205535", "eta": "0.3", "max_depth": "6.0", "subsample": "0.8", "colsample_bytree": "0.9778170465164595"}}

@ -1 +1 @@
{"duration": 4.356304883956909, "input_args": {"n_estimators": "122.21742728992572", "eta": "0.06452090304204987", "max_depth": "11.197056874649611", "subsample": "0.941614515559209", "colsample_bytree": "0.8311989040672406"}}
{"duration": 1.8177359104156494, "input_args": {"n_estimators": "122.21742728992572", "eta": "0.06452090304204987", "max_depth": "11.197056874649611", "subsample": "0.941614515559209", "colsample_bytree": "0.8311989040672406"}}

@ -1 +0,0 @@
{"duration": 4.243398904800415, "input_args": {"n_estimators": "174.53471828158587", "eta": "0.09632267985087588", "max_depth": "6.020831446310865", "subsample": "0.845639293415064", "colsample_bytree": "0.9738813732950363"}}

@ -2,7 +2,7 @@
@memory.cache
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
# initialize model
print('inside')
print('loopingIris')
n_estimators = int(n_estimators)
max_depth = int(max_depth)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)

@ -0,0 +1 @@
{"duration": 21.04797101020813, "input_args": {"Data": " F1_l2 F6_b F1_l2+F6_b |F1_l2-F6_b| F1_l2xF6_b F1_l2/F6_b F6_b/F1_l2\n0 -0.621488 1 0.378512 1.621488 -0.621488 -0.621488 -1.609041\n1 -0.785875 1 0.214125 1.785875 -0.785875 -0.785875 -1.272467\n2 -1.836501 11 9.163499 12.836501 -20.201514 -0.166955 -5.989650\n3 -1.395929 6 4.604071 7.395929 -8.375572 -0.232655 -4.298214\n4 -0.943416 3 2.056584 3.943416 -2.830249 -0.314472 -3.179932\n... ... ... ... ... ... ... ...\n1594 -0.736966 2 1.263034 2.736966 -1.473931 -0.368483 -2.713831\n1595 -0.862496 2 1.137504 2.862496 -1.724993 -0.431248 -2.318850\n1596 -0.971431 3 2.028569 3.971431 -2.914293 -0.323810 -3.088228\n1597 -0.632629 3 2.367371 3.632629 -1.897887 -0.210876 -4.742116\n1598 -1.689660 9 7.310340 10.689660 -15.206939 -0.187740 -5.326516\n\n[1599 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 13.459782838821411, "input_args": {"Data": " F1_l2 F2 F3 F4 F5 F6 F7 F8 F9_l10 F10 F11\n0 -0.621488 0.065 0.99460 7.3 21.0 0.00 1.2 3.39 -0.327902 15.0 10.0\n1 -0.785875 0.073 0.99680 7.8 18.0 0.02 2.0 3.36 -0.244125 9.0 9.5\n2 -1.836501 0.092 0.99690 8.5 103.0 0.56 1.8 3.30 -0.124939 35.0 10.5\n3 -1.395929 0.066 0.99680 8.1 30.0 0.28 2.1 3.23 -0.136677 13.0 9.7\n4 -0.943416 0.085 0.99680 7.5 35.0 0.16 1.9 3.38 -0.207608 12.0 9.5\n... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 0.090 0.99490 6.2 44.0 0.08 2.0 3.45 -0.236572 32.0 10.5\n1595 -0.862496 0.062 0.99512 5.9 51.0 0.10 2.2 3.52 -0.119186 39.0 11.2\n1596 -0.971431 0.076 0.99574 6.3 40.0 0.13 2.3 3.42 -0.124939 29.0 11.0\n1597 -0.632629 0.075 0.99547 5.9 44.0 0.12 2.0 3.57 -0.148742 32.0 10.2\n1598 -1.689660 0.067 0.99549 6.0 42.0 0.47 3.6 3.39 -0.180456 18.0 11.0\n\n[1599 rows x 11 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 13.591701030731201, "input_args": {"Data": " F1_l2 F2 F3 F4 F5 F6_b F7 F8 F9_l10 F10 F11\n0 -0.621488 0.065 0.99460 7.3 21.0 1 1.2 3.39 -0.327902 15.0 10.0\n1 -0.785875 0.073 0.99680 7.8 18.0 1 2.0 3.36 -0.244125 9.0 9.5\n2 -1.836501 0.092 0.99690 8.5 103.0 11 1.8 3.30 -0.124939 35.0 10.5\n3 -1.395929 0.066 0.99680 8.1 30.0 6 2.1 3.23 -0.136677 13.0 9.7\n4 -0.943416 0.085 0.99680 7.5 35.0 3 1.9 3.38 -0.207608 12.0 9.5\n... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 0.090 0.99490 6.2 44.0 2 2.0 3.45 -0.236572 32.0 10.5\n1595 -0.862496 0.062 0.99512 5.9 51.0 2 2.2 3.52 -0.119186 39.0 11.2\n1596 -0.971431 0.076 0.99574 6.3 40.0 3 2.3 3.42 -0.124939 29.0 11.0\n1597 -0.632629 0.075 0.99547 5.9 44.0 3 2.0 3.57 -0.148742 32.0 10.2\n1598 -1.689660 0.067 0.99549 6.0 42.0 9 3.6 3.39 -0.180456 18.0 11.0\n\n[1599 rows x 11 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 15.052191019058228, "input_args": {"Data": " F1_l2 F2 F3 F4 F5 F6_b F7 F8 F9_l10 F10 F11 F1_l2xF6_b\n0 -0.621488 0.065 0.99460 7.3 21.0 1 1.2 3.39 -0.327902 15.0 10.0 -0.621488\n1 -0.785875 0.073 0.99680 7.8 18.0 1 2.0 3.36 -0.244125 9.0 9.5 -0.785875\n2 -1.836501 0.092 0.99690 8.5 103.0 11 1.8 3.30 -0.124939 35.0 10.5 -20.201514\n3 -1.395929 0.066 0.99680 8.1 30.0 6 2.1 3.23 -0.136677 13.0 9.7 -8.375572\n4 -0.943416 0.085 0.99680 7.5 35.0 3 1.9 3.38 -0.207608 12.0 9.5 -2.830249\n... ... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 0.090 0.99490 6.2 44.0 2 2.0 3.45 -0.236572 32.0 10.5 -1.473931\n1595 -0.862496 0.062 0.99512 5.9 51.0 2 2.2 3.52 -0.119186 39.0 11.2 -1.724993\n1596 -0.971431 0.076 0.99574 6.3 40.0 3 2.3 3.42 -0.124939 29.0 11.0 -2.914293\n1597 -0.632629 0.075 0.99547 5.9 44.0 3 2.0 3.57 -0.148742 32.0 10.2 -1.897887\n1598 -1.689660 0.067 0.99549 6.0 42.0 9 3.6 3.39 -0.180456 18.0 11.0 -15.206939\n\n[1599 rows x 12 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 16.84209895133972, "input_args": {"Data": " F1_l2 F9_l10 F1_l2+F9_l10 |F1_l2-F9_l10| F1_l2xF9_l10 F1_l2/F9_l10 F9_l10/F1_l2\n0 -0.621488 -0.327902 -0.949391 0.293586 0.203787 1.895347 0.527608\n1 -0.785875 -0.244125 -1.030000 0.541750 0.191852 3.219149 0.310641\n2 -1.836501 -0.124939 -1.961440 1.711563 0.229450 14.699214 0.068031\n3 -1.395929 -0.136677 -1.532606 1.259252 0.190792 10.213330 0.097911\n4 -0.943416 -0.207608 -1.151025 0.735808 0.195861 4.544213 0.220060\n... ... ... ... ... ... ... ...\n1594 -0.736966 -0.236572 -0.973538 0.500394 0.174345 3.115185 0.321008\n1595 -0.862496 -0.119186 -0.981683 0.743310 0.102798 7.236534 0.138188\n1596 -0.971431 -0.124939 -1.096370 0.846492 0.121369 7.775257 0.128613\n1597 -0.632629 -0.148742 -0.781371 0.483887 0.094098 4.253206 0.235117\n1598 -1.689660 -0.180456 -1.870116 1.509204 0.304909 9.363276 0.106800\n\n[1599 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 9.041555166244507, "input_args": {"Data": " F6_b F9_l10 F6_b+F9_l10 |F6_b-F9_l10| F6_bxF9_l10 F6_b/F9_l10 F9_l10/F6_b\n0 1 -0.327902 0.672098 1.327902 -0.327902 -3.049690 -0.327902\n1 1 -0.244125 0.755875 1.244125 -0.244125 -4.096260 -0.244125\n2 11 -0.124939 10.875061 11.124939 -1.374326 -88.043151 -0.011358\n3 6 -0.136677 5.863323 6.136677 -0.820063 -43.899075 -0.022780\n4 3 -0.207608 2.792392 3.207608 -0.622825 -14.450289 -0.069203\n... ... ... ... ... ... ... ...\n1594 2 -0.236572 1.763428 2.236572 -0.473144 -8.454086 -0.118286\n1595 2 -0.119186 1.880814 2.119186 -0.238373 -16.780437 -0.059593\n1596 3 -0.124939 2.875061 3.124939 -0.374816 -24.011768 -0.041646\n1597 3 -0.148742 2.851258 3.148742 -0.446225 -20.169199 -0.049581\n1598 9 -0.180456 8.819544 9.180456 -1.624105 -49.873636 -0.020051\n\n[1599 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 24.650119066238403, "input_args": {"Data": " F1_l2 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11\n0 -0.621488 0.065 0.99460 7.3 21.0 0.00 1.2 3.39 0.47 15.0 10.0\n1 -0.785875 0.073 0.99680 7.8 18.0 0.02 2.0 3.36 0.57 9.0 9.5\n2 -1.836501 0.092 0.99690 8.5 103.0 0.56 1.8 3.30 0.75 35.0 10.5\n3 -1.395929 0.066 0.99680 8.1 30.0 0.28 2.1 3.23 0.73 13.0 9.7\n4 -0.943416 0.085 0.99680 7.5 35.0 0.16 1.9 3.38 0.62 12.0 9.5\n... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 0.090 0.99490 6.2 44.0 0.08 2.0 3.45 0.58 32.0 10.5\n1595 -0.862496 0.062 0.99512 5.9 51.0 0.10 2.2 3.52 0.76 39.0 11.2\n1596 -0.971431 0.076 0.99574 6.3 40.0 0.13 2.3 3.42 0.75 29.0 11.0\n1597 -0.632629 0.075 0.99547 5.9 44.0 0.12 2.0 3.57 0.71 32.0 10.2\n1598 -1.689660 0.067 0.99549 6.0 42.0 0.47 3.6 3.39 0.66 18.0 11.0\n\n[1599 rows x 11 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 48.68789100646973, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11\n0 0.650 0.065 0.99460 7.3 21.0 0.00 1.2 3.39 0.47 15.0 10.0\n1 0.580 0.073 0.99680 7.8 18.0 0.02 2.0 3.36 0.57 9.0 9.5\n2 0.280 0.092 0.99690 8.5 103.0 0.56 1.8 3.30 0.75 35.0 10.5\n3 0.380 0.066 0.99680 8.1 30.0 0.28 2.1 3.23 0.73 13.0 9.7\n4 0.520 0.085 0.99680 7.5 35.0 0.16 1.9 3.38 0.62 12.0 9.5\n... ... ... ... ... ... ... ... ... ... ... ...\n1594 0.600 0.090 0.99490 6.2 44.0 0.08 2.0 3.45 0.58 32.0 10.5\n1595 0.550 0.062 0.99512 5.9 51.0 0.10 2.2 3.52 0.76 39.0 11.2\n1596 0.510 0.076 0.99574 6.3 40.0 0.13 2.3 3.42 0.75 29.0 11.0\n1597 0.645 0.075 0.99547 5.9 44.0 0.12 2.0 3.57 0.71 32.0 10.2\n1598 0.310 0.067 0.99549 6.0 42.0 0.47 3.6 3.39 0.66 18.0 11.0\n\n[1599 rows x 11 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8650366644053494,\n eta=0.232401544584516, gamma=0, gpu_id=-1, importance_type='gain',\n interaction_constraints='', learning_rate=0.23240155,\n max_delta_step=0, max_depth=9, min_child_weight=1, missing=nan,\n monotone_constraints='()', n_estimators=178, n_jobs=12,\n num_parallel_tree=1, objective='multi:softprob', probability=True,\n random_state=42, reg_alpha=0, reg_lambda=1, scale_pos_weight=None,\n silent=True, subsample=0.8944429850323898, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 25.00281596183777, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11\n0 0.650 0.065 0.99460 7.3 21.0 0.00 1.2 3.39 0.47 15.0 10.0\n1 0.580 0.073 0.99680 7.8 18.0 0.02 2.0 3.36 0.57 9.0 9.5\n2 0.280 0.092 0.99690 8.5 103.0 0.56 1.8 3.30 0.75 35.0 10.5\n3 0.380 0.066 0.99680 8.1 30.0 0.28 2.1 3.23 0.73 13.0 9.7\n4 0.520 0.085 0.99680 7.5 35.0 0.16 1.9 3.38 0.62 12.0 9.5\n... ... ... ... ... ... ... ... ... ... ... ...\n1594 0.600 0.090 0.99490 6.2 44.0 0.08 2.0 3.45 0.58 32.0 10.5\n1595 0.550 0.062 0.99512 5.9 51.0 0.10 2.2 3.52 0.76 39.0 11.2\n1596 0.510 0.076 0.99574 6.3 40.0 0.13 2.3 3.42 0.75 29.0 11.0\n1597 0.645 0.075 0.99547 5.9 44.0 0.12 2.0 3.57 0.71 32.0 10.2\n1598 0.310 0.067 0.99549 6.0 42.0 0.47 3.6 3.39 0.66 18.0 11.0\n\n[1599 rows x 11 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 34.51085186004639, "input_args": {"Data": " F1_l2 F6_b F9_l10 F1_l2+F6_b F6_b+F9_l10 F1_l2+F9_l10 F1_l2+F6_b+F9_l10 |F1_l2-F6_b| |F6_b-F9_l10| ... F9_l10/F6_b F1_l2/F9_l10 F9_l10/F1_l2 F1_l2/F6_b/F9_l10 F1_l2/F9_l10/F6_b F6_b/F9_l10/F1_l2 F6_b/F1_l2/F9_l10 F9_l10/F1_l2/F6_b F9_l10/F6_b/F1_l2\n0 -0.621488 1 -0.327902 0.378512 0.672098 -0.949391 0.050609 1.621488 1.327902 ... -0.327902 1.895347 0.527608 1.895347 1.895347 4.907075 4.907075 0.527608 0.527608\n1 -0.785875 1 -0.244125 0.214125 0.755875 -1.030000 -0.030000 1.785875 1.244125 ... -0.244125 3.219149 0.310641 3.219149 3.219149 5.212354 5.212354 0.310641 0.310641\n2 -1.836501 11 -0.124939 9.163499 10.875061 -1.961440 9.038560 12.836501 11.124939 ... -0.011358 14.699214 0.068031 1.336292 1.336292 47.940697 47.940697 0.006185 0.006185\n3 -1.395929 6 -0.136677 4.604071 5.863323 -1.532606 4.467394 7.395929 6.136677 ... -0.022780 10.213330 0.097911 1.702222 1.702222 31.447935 31.447935 0.016319 0.016319\n4 -0.943416 3 -0.207608 2.056584 2.792392 -1.151025 1.848975 3.943416 3.207608 ... -0.069203 4.544213 0.220060 1.514738 1.514738 15.316977 15.316977 0.073353 0.073353\n... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n1594 -0.736966 2 -0.236572 1.263034 1.763428 -0.973538 1.026462 2.736966 2.236572 ... -0.118286 3.115185 0.321008 1.557593 1.557593 11.471479 11.471479 0.160504 0.160504\n1595 -0.862496 2 -0.119186 1.137504 1.880814 -0.981683 1.018317 2.862496 2.119186 ... -0.059593 7.236534 0.138188 3.618267 3.618267 19.455659 19.455659 0.069094 0.069094\n1596 -0.971431 3 -0.124939 2.028569 2.875061 -1.096370 1.903630 3.971431 3.124939 ... -0.041646 7.775257 0.128613 2.591752 2.591752 24.717939 24.717939 0.042871 0.042871\n1597 -0.632629 3 -0.148742 2.367371 2.851258 -0.781371 2.218629 3.632629 3.148742 ... -0.049581 4.253206 0.235117 1.417735 1.417735 31.881563 31.881563 0.078372 0.078372\n1598 -1.689660 9 -0.180456 7.310340 8.819544 -1.870116 7.129884 10.689660 9.180456 ... -0.020051 9.363276 0.106800 1.040364 1.040364 29.516967 29.516967 0.011867 0.011867\n\n[1599 rows x 27 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.9223705789444759,\n eta=0.08487346516301046, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0848734677, max_delta_step=0, max_depth=7,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=76, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.8912139968434072, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -0,0 +1 @@
{"duration": 12.692944049835205, "input_args": {"Data": " F1 F2 F3 F4\n0 2.5 3.3 6.3 6.0\n1 1.9 2.7 5.8 5.1\n2 2.1 3.0 7.1 5.9\n3 1.8 2.9 6.3 5.6\n4 2.2 3.0 6.5 5.8\n.. ... ... ... ...\n145 0.3 3.0 4.8 1.4\n146 0.2 3.8 5.1 1.6\n147 0.2 3.2 4.6 1.4\n148 0.2 3.7 5.3 1.5\n149 0.2 3.3 5.0 1.4\n\n[150 rows x 4 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8311989040672406,\n eta=0.06452090304204987, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.0645209029, max_delta_step=0, max_depth=11,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=122, n_jobs=12, num_parallel_tree=1,\n objective='multi:softprob', probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=None, silent=True,\n subsample=0.941614515559209, tree_method='exact',\n use_label_encoder=False, validate_parameters=1, ...)"}}

@ -51,7 +51,7 @@
</b-col>
<b-col cols="2">
<mdb-card style="margin-top: 15px;">
<mdb-card-header color="primary-color" tag="h5" class="text-center">Process Tracker and Predictive Results
<mdb-card-header color="primary-color" tag="h5" class="text-left">Process Tracker and Predictive Results
</mdb-card-header>
<mdb-card-body>
<mdb-card-text class="text-center" style="min-height: 920px">
@ -149,6 +149,7 @@ export default Vue.extend({
DataResults: '',
keyNow: 1,
instancesImportance: '',
//RetrieveValueFile: 'VehicleC', // this is for the default data set
RetrieveValueFile: 'VehicleC', // this is for the default data set
SelectedFeaturesPerClassifier: '',
FinalResults: 0,
@ -476,7 +477,7 @@ export default Vue.extend({
EventBus.$emit('SlidersCall')
this.keySlider = false
}
//EventBus.$emit('ConfirmDataSet') // REMOVE THAT!
EventBus.$emit('ConfirmDataSet') // REMOVE THAT!
} else {
EventBus.$emit('dataSpace', this.correlResul)
EventBus.$emit('quad', this.correlResul)
@ -862,7 +863,7 @@ body {
top: 0px;
bottom: 0px;
margin-top: -4px !important;
overflow: hidden !important; // remove scrolling
//overflow: hidden !important; // remove scrolling
}
.modal-backdrop {

@ -525,7 +525,7 @@ def create_global_function():
@memory.cache
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
# initialize model
print('inside')
print('loopingVehicle')
n_estimators = int(n_estimators)
max_depth = int(max_depth)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)

Loading…
Cancel
Save