new data set

master
parent 7d7acfff70
commit a0c6f47227
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. 1
      cachedir/joblib/run/estimator/01638357491a1f7a73e0ab8e8f582409/metadata.json
  3. BIN
      cachedir/joblib/run/estimator/01638357491a1f7a73e0ab8e8f582409/output.pkl
  4. 2
      cachedir/joblib/run/estimator/07007f7dca9bdfd648d3542e509afb89/metadata.json
  5. BIN
      cachedir/joblib/run/estimator/07007f7dca9bdfd648d3542e509afb89/output.pkl
  6. 1
      cachedir/joblib/run/estimator/24436eb7944e5f756192f4144586be52/metadata.json
  7. 1
      cachedir/joblib/run/estimator/26eaea169055571f02d589ab35824eec/metadata.json
  8. 2
      cachedir/joblib/run/estimator/2d3aa4b9a7a5e05fecd214f13f35c2f6/metadata.json
  9. BIN
      cachedir/joblib/run/estimator/2d3aa4b9a7a5e05fecd214f13f35c2f6/output.pkl
  10. 2
      cachedir/joblib/run/estimator/501c8577828b16d7edbbaa0c4c50298a/metadata.json
  11. BIN
      cachedir/joblib/run/estimator/501c8577828b16d7edbbaa0c4c50298a/output.pkl
  12. 2
      cachedir/joblib/run/estimator/53c192c9764e2921d7ee2543dca13d78/metadata.json
  13. BIN
      cachedir/joblib/run/estimator/53c192c9764e2921d7ee2543dca13d78/output.pkl
  14. 2
      cachedir/joblib/run/estimator/6090fba618ef6aae9c62af2152c10831/metadata.json
  15. BIN
      cachedir/joblib/run/estimator/6090fba618ef6aae9c62af2152c10831/output.pkl
  16. 1
      cachedir/joblib/run/estimator/61afb17f88fffa151324e4d016d0ccee/metadata.json
  17. 2
      cachedir/joblib/run/estimator/65ad99c302a3e6128ffd21fb73ff7858/metadata.json
  18. BIN
      cachedir/joblib/run/estimator/65ad99c302a3e6128ffd21fb73ff7858/output.pkl
  19. 1
      cachedir/joblib/run/estimator/76ed4fb5a8425d0cdcb38d7aab16b0b2/metadata.json
  20. BIN
      cachedir/joblib/run/estimator/76ed4fb5a8425d0cdcb38d7aab16b0b2/output.pkl
  21. 2
      cachedir/joblib/run/estimator/878e230e8d668ff8bf9ae658973cf276/metadata.json
  22. BIN
      cachedir/joblib/run/estimator/878e230e8d668ff8bf9ae658973cf276/output.pkl
  23. 2
      cachedir/joblib/run/estimator/8dbc0d7097e6aca21bb30a8dc860f045/metadata.json
  24. BIN
      cachedir/joblib/run/estimator/8dbc0d7097e6aca21bb30a8dc860f045/output.pkl
  25. 2
      cachedir/joblib/run/estimator/96ba12b58138896ed090735e777c34ba/metadata.json
  26. BIN
      cachedir/joblib/run/estimator/96ba12b58138896ed090735e777c34ba/output.pkl
  27. 1
      cachedir/joblib/run/estimator/9814e674b9997336c137ce7a498b89d2/metadata.json
  28. BIN
      cachedir/joblib/run/estimator/9814e674b9997336c137ce7a498b89d2/output.pkl
  29. 2
      cachedir/joblib/run/estimator/9d6d5c57facf6580e27ecc5ac3a9da74/metadata.json
  30. BIN
      cachedir/joblib/run/estimator/9d6d5c57facf6580e27ecc5ac3a9da74/output.pkl
  31. 1
      cachedir/joblib/run/estimator/a0b1a379a10f9b720cb2a91b1b4f2fa1/metadata.json
  32. BIN
      cachedir/joblib/run/estimator/a0b1a379a10f9b720cb2a91b1b4f2fa1/output.pkl
  33. 2
      cachedir/joblib/run/estimator/b8a9b059b71e375385bcb3affc80aaae/metadata.json
  34. BIN
      cachedir/joblib/run/estimator/b8a9b059b71e375385bcb3affc80aaae/output.pkl
  35. 2
      cachedir/joblib/run/estimator/bd6da16bc4f265fe52537fa5b2e84845/metadata.json
  36. BIN
      cachedir/joblib/run/estimator/bd6da16bc4f265fe52537fa5b2e84845/output.pkl
  37. 2
      cachedir/joblib/run/estimator/c5ae132fa788a41769fd65f6ea6fc878/metadata.json
  38. BIN
      cachedir/joblib/run/estimator/c5ae132fa788a41769fd65f6ea6fc878/output.pkl
  39. 2
      cachedir/joblib/run/estimator/c78d75f852ea2ac732cd2c4d8cf5e3e3/metadata.json
  40. BIN
      cachedir/joblib/run/estimator/c78d75f852ea2ac732cd2c4d8cf5e3e3/output.pkl
  41. 2
      cachedir/joblib/run/estimator/d7a4fed50ef206c00c730c9b2e013bcb/metadata.json
  42. BIN
      cachedir/joblib/run/estimator/d7a4fed50ef206c00c730c9b2e013bcb/output.pkl
  43. 2
      cachedir/joblib/run/estimator/e5b137b59fcad7738516be11e783d76d/metadata.json
  44. BIN
      cachedir/joblib/run/estimator/e5b137b59fcad7738516be11e783d76d/output.pkl
  45. 2
      cachedir/joblib/run/estimator/e907a73e538f95a05e43901c7239d26f/metadata.json
  46. BIN
      cachedir/joblib/run/estimator/e907a73e538f95a05e43901c7239d26f/output.pkl
  47. 2
      cachedir/joblib/run/estimator/ecc4f427737ec1d8fd0403c51e99091c/metadata.json
  48. BIN
      cachedir/joblib/run/estimator/ecc4f427737ec1d8fd0403c51e99091c/output.pkl
  49. 1
      cachedir/joblib/run/estimator/eefbc848db1507e48416e389ebd02837/metadata.json
  50. BIN
      cachedir/joblib/run/estimator/eefbc848db1507e48416e389ebd02837/output.pkl
  51. 1
      cachedir/joblib/run/estimator/ef6bb9df399c46bfde63ecf0478c6582/metadata.json
  52. 2
      cachedir/joblib/run/estimator/f1d92e5f2a3bd05ecb2416c00ab93942/metadata.json
  53. BIN
      cachedir/joblib/run/estimator/f1d92e5f2a3bd05ecb2416c00ab93942/output.pkl
  54. 1
      cachedir/joblib/run/estimator/f4424e7e031a773cea1548224ffc9bc5/metadata.json
  55. BIN
      cachedir/joblib/run/estimator/f4424e7e031a773cea1548224ffc9bc5/output.pkl
  56. 2
      cachedir/joblib/run/estimator/f636511a768ea642182097d47d727cb3/metadata.json
  57. BIN
      cachedir/joblib/run/estimator/f636511a768ea642182097d47d727cb3/output.pkl
  58. 4
      cachedir/joblib/run/estimator/func_code.py
  59. BIN
      cachedir/joblib/run/estimatorFeatureSelection/5325ae9ab4d892e28c2fd6154fcfbcb9/output.pkl
  60. 1
      cachedir/joblib/run/estimatorFeatureSelection/b9f18063a956e60963835da31891e04a/metadata.json
  61. 2
      frontend/src/components/Main.vue
  62. 25
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 2.468634843826294, "input_args": {"n_estimators": "123.22873559815328", "eta": "0.18061861147148012", "max_depth": "9.30263441184733", "subsample": "0.8914267677503952", "colsample_bytree": "0.8510959039929198"}}

@ -1 +1 @@
{"duration": 12.095735788345337, "input_args": {"n_estimators": "74.90081706613316", "eta": "0.24281758667148645", "max_depth": "6.444267910404542", "subsample": "0.823173811905026", "colsample_bytree": "0.9458014336081975"}}
{"duration": 1.096883773803711, "input_args": {"n_estimators": "74.90081706613316", "eta": "0.24281758667148645", "max_depth": "6.444267910404542", "subsample": "0.823173811905026", "colsample_bytree": "0.9458014336081975"}}

@ -1 +0,0 @@
{"duration": 18.44561195373535, "input_args": {"n_estimators": "75.86346086389126", "eta": "0.06372449073826002", "max_depth": "9.472648321000811", "subsample": "0.8945798865585665", "colsample_bytree": "0.9196463484970115"}}

@ -1 +0,0 @@
{"duration": 15.748680114746094, "input_args": {"n_estimators": "91.10980257621819", "eta": "0.1812911976270734", "max_depth": "10.851008286060418", "subsample": "0.9410392159460682", "colsample_bytree": "0.9881736755727641"}}

@ -1 +1 @@
{"duration": 2.4347519874572754, "input_args": {"n_estimators": "13.819321337554923", "eta": "0.07212312551297988", "max_depth": "7.175897174514871", "subsample": "0.8650660661526529", "colsample_bytree": "0.9843748470046234"}}
{"duration": 0.2637169361114502, "input_args": {"n_estimators": "13.819321337554923", "eta": "0.07212312551297988", "max_depth": "7.175897174514871", "subsample": "0.8650660661526529", "colsample_bytree": "0.9843748470046234"}}

@ -1 +1 @@
{"duration": 9.82509994506836, "input_args": {"n_estimators": "121.73840441842214", "eta": "0.28767857660247903", "max_depth": "10.39196365086843", "subsample": "0.8312037280884873", "colsample_bytree": "0.8749080237694725"}}
{"duration": 1.1226909160614014, "input_args": {"n_estimators": "121.73840441842214", "eta": "0.28767857660247903", "max_depth": "10.39196365086843", "subsample": "0.8312037280884873", "colsample_bytree": "0.8749080237694725"}}

@ -1 +1 @@
{"duration": 18.10935401916504, "input_args": {"n_estimators": "182.3174784053625", "eta": "0.17379422752781754", "max_depth": "6.20633112669131", "subsample": "0.8517559963200034", "colsample_bytree": "0.8244076469689559"}}
{"duration": 2.356210947036743, "input_args": {"n_estimators": "182.3174784053625", "eta": "0.17379422752781754", "max_depth": "6.20633112669131", "subsample": "0.8517559963200034", "colsample_bytree": "0.8244076469689559"}}

@ -1 +1 @@
{"duration": 17.332634925842285, "input_args": {"n_estimators": "114.44905352605177", "eta": "0.22831119680574874", "max_depth": "10.564710291701385", "subsample": "0.9541934359909122", "colsample_bytree": "0.8239188491876603"}}
{"duration": 2.3413259983062744, "input_args": {"n_estimators": "114.44905352605177", "eta": "0.22831119680574874", "max_depth": "10.564710291701385", "subsample": "0.9541934359909122", "colsample_bytree": "0.8239188491876603"}}

@ -1 +0,0 @@
{"duration": 17.338062047958374, "input_args": {"n_estimators": "72.11194788979516", "eta": "0.06999909260172242", "max_depth": "11.660767639606618", "subsample": "0.8937069405852791", "colsample_bytree": "0.9970550492754673"}}

@ -1 +1 @@
{"duration": 8.648480892181396, "input_args": {"n_estimators": "46.40612658226385", "eta": "0.2924774630404986", "max_depth": "10.99465584480253", "subsample": "0.8363649934414201", "colsample_bytree": "0.8041168988591605"}}
{"duration": 1.0125761032104492, "input_args": {"n_estimators": "46.40612658226385", "eta": "0.2924774630404986", "max_depth": "10.99465584480253", "subsample": "0.8363649934414201", "colsample_bytree": "0.8041168988591605"}}

@ -0,0 +1 @@
{"duration": 3.263929843902588, "input_args": {"n_estimators": "186.59460399385202", "eta": "0.13823719698301656", "max_depth": "6.001743521016889", "subsample": "0.8394748246777188", "colsample_bytree": "0.9130349754235753"}}

@ -1 +1 @@
{"duration": 13.893840074539185, "input_args": {"n_estimators": "89.22927863521258", "eta": "0.12606056073988442", "max_depth": "9.148538589793427", "subsample": "0.8582458280396084", "colsample_bytree": "0.8366809019706868"}}
{"duration": 2.778671979904175, "input_args": {"n_estimators": "89.22927863521258", "eta": "0.12606056073988442", "max_depth": "9.148538589793427", "subsample": "0.8582458280396084", "colsample_bytree": "0.8366809019706868"}}

@ -1 +1 @@
{"duration": 16.08168911933899, "input_args": {"n_estimators": "74.56689870524991", "eta": "0.11783725794347398", "max_depth": "10.972425054911575", "subsample": "0.8561869019374762", "colsample_bytree": "0.8777354579378964"}}
{"duration": 2.2322471141815186, "input_args": {"n_estimators": "74.56689870524991", "eta": "0.11783725794347398", "max_depth": "10.972425054911575", "subsample": "0.8561869019374762", "colsample_bytree": "0.8777354579378964"}}

@ -1 +1 @@
{"duration": 4.351968050003052, "input_args": {"n_estimators": "17.393878305774606", "eta": "0.20582453170688947", "max_depth": "7.985388149115895", "subsample": "0.8621964643431325", "colsample_bytree": "0.9726206851751187"}}
{"duration": 0.447145938873291, "input_args": {"n_estimators": "17.393878305774606", "eta": "0.20582453170688947", "max_depth": "7.985388149115895", "subsample": "0.8621964643431325", "colsample_bytree": "0.9726206851751187"}}

@ -0,0 +1 @@
{"duration": 8.4358651638031, "input_args": {"n_estimators": "189.22741347546307", "eta": "0.18638712930060214", "max_depth": "8.451877954263406", "subsample": "0.9977836095949623", "colsample_bytree": "0.8977236474707452"}}

@ -1 +1 @@
{"duration": 17.240567922592163, "input_args": {"n_estimators": "179.4913333333915", "eta": "0.24378320584027863", "max_depth": "11.636993649385134", "subsample": "0.919579995762217", "colsample_bytree": "0.9939169255529117"}}
{"duration": 2.5005016326904297, "input_args": {"n_estimators": "179.4913333333915", "eta": "0.24378320584027863", "max_depth": "11.636993649385134", "subsample": "0.919579995762217", "colsample_bytree": "0.9939169255529117"}}

@ -0,0 +1 @@
{"duration": 3.0930938720703125, "input_args": {"n_estimators": "89.69435178841537", "eta": "0.07551767978969", "max_depth": "11.392717959532579", "subsample": "0.8693834288925464", "colsample_bytree": "0.8955099076945017"}}

@ -1 +1 @@
{"duration": 18.743260145187378, "input_args": {"n_estimators": "138.4254401698706", "eta": "0.1261534422933427", "max_depth": "6.586032684038303", "subsample": "0.8880304987479203", "colsample_bytree": "0.9616794696232922"}}
{"duration": 2.0926430225372314, "input_args": {"n_estimators": "138.4254401698706", "eta": "0.1261534422933427", "max_depth": "6.586032684038303", "subsample": "0.8880304987479203", "colsample_bytree": "0.9616794696232922"}}

@ -1 +1 @@
{"duration": 20.84002995491028, "input_args": {"n_estimators": "120.52084092809828", "eta": "0.09991844553958994", "max_depth": "9.08540663048167", "subsample": "0.8092900825439996", "colsample_bytree": "0.9570351922786027"}}
{"duration": 2.1937928199768066, "input_args": {"n_estimators": "120.52084092809828", "eta": "0.09991844553958994", "max_depth": "9.08540663048167", "subsample": "0.8092900825439996", "colsample_bytree": "0.9570351922786027"}}

@ -1 +1 @@
{"duration": 21.34256410598755, "input_args": {"n_estimators": "164.01497854869265", "eta": "0.0996789203835431", "max_depth": "6.033132702741614", "subsample": "0.9413714687695234", "colsample_bytree": "0.9544489538593315"}}
{"duration": 3.594921827316284, "input_args": {"n_estimators": "164.01497854869265", "eta": "0.0996789203835431", "max_depth": "6.033132702741614", "subsample": "0.9413714687695234", "colsample_bytree": "0.9544489538593315"}}

@ -1 +1 @@
{"duration": 19.493457794189453, "input_args": {"n_estimators": "178.00648480238368", "eta": "0.232401544584516", "max_depth": "9.825344828131279", "subsample": "0.8944429850323898", "colsample_bytree": "0.8650366644053494"}}
{"duration": 3.4963488578796387, "input_args": {"n_estimators": "178.00648480238368", "eta": "0.232401544584516", "max_depth": "9.825344828131279", "subsample": "0.8944429850323898", "colsample_bytree": "0.8650366644053494"}}

@ -1 +1 @@
{"duration": 16.748509883880615, "input_args": {"n_estimators": "111.60850447193953", "eta": "0.12792776902235276", "max_depth": "9.120408127066865", "subsample": "0.8369708911051055", "colsample_bytree": "0.9325044568707964"}}
{"duration": 3.7734007835388184, "input_args": {"n_estimators": "111.60850447193953", "eta": "0.12792776902235276", "max_depth": "9.120408127066865", "subsample": "0.8369708911051055", "colsample_bytree": "0.9325044568707964"}}

@ -1 +1 @@
{"duration": 24.637609004974365, "input_args": {"n_estimators": "190.03267976439997", "eta": "0.09263103092182289", "max_depth": "6.390309557911677", "subsample": "0.9931264066149119", "colsample_bytree": "0.9215089703802877"}}
{"duration": 2.851027011871338, "input_args": {"n_estimators": "190.03267976439997", "eta": "0.09263103092182289", "max_depth": "6.390309557911677", "subsample": "0.9931264066149119", "colsample_bytree": "0.9215089703802877"}}

@ -1 +1 @@
{"duration": 13.197858095169067, "input_args": {"n_estimators": "76.44055944226989", "eta": "0.08487346516301046", "max_depth": "7.752867891211309", "subsample": "0.8912139968434072", "colsample_bytree": "0.9223705789444759"}}
{"duration": 1.353074073791504, "input_args": {"n_estimators": "76.44055944226989", "eta": "0.08487346516301046", "max_depth": "7.752867891211309", "subsample": "0.8912139968434072", "colsample_bytree": "0.9223705789444759"}}

@ -1 +1 @@
{"duration": 3.0423359870910645, "input_args": {"n_estimators": "9.956729715098561", "eta": "0.18068320734549853", "max_depth": "8.565246110151298", "subsample": "0.821578285398661", "colsample_bytree": "0.8987591192728782"}}
{"duration": 1.3453011512756348, "input_args": {"n_estimators": "9.956729715098561", "eta": "0.18068320734549853", "max_depth": "8.565246110151298", "subsample": "0.821578285398661", "colsample_bytree": "0.8987591192728782"}}

@ -0,0 +1 @@
{"duration": 5.720117807388306, "input_args": {"n_estimators": "188.7569839959147", "eta": "0.2593099998788648", "max_depth": "6.400782463573032", "subsample": "0.9972633684544026", "colsample_bytree": "0.8702434039276976"}}

@ -1 +0,0 @@
{"duration": 17.00960898399353, "input_args": {"n_estimators": "73.50613754427229", "eta": "0.05", "max_depth": "9.336611726304309", "subsample": "1.0", "colsample_bytree": "0.8894830486960281"}}

@ -1 +1 @@
{"duration": 5.744019031524658, "input_args": {"n_estimators": "19.53737551755531", "eta": "0.08523105624369066", "max_depth": "10.813181884524237", "subsample": "0.9973773873201035", "colsample_bytree": "0.9085392166316497"}}
{"duration": 0.5371649265289307, "input_args": {"n_estimators": "19.53737551755531", "eta": "0.08523105624369066", "max_depth": "10.813181884524237", "subsample": "0.9973773873201035", "colsample_bytree": "0.9085392166316497"}}

@ -1 +0,0 @@
{"duration": 12.92500615119934, "input_args": {"n_estimators": "78.05929830372413", "eta": "0.26819361491123006", "max_depth": "8.416776430272158", "subsample": "0.9282741702875538", "colsample_bytree": "0.8650884194092069"}}

@ -1 +1 @@
{"duration": 14.425058126449585, "input_args": {"n_estimators": "122.21742728992572", "eta": "0.06452090304204987", "max_depth": "11.197056874649611", "subsample": "0.941614515559209", "colsample_bytree": "0.8311989040672406"}}
{"duration": 4.091923952102661, "input_args": {"n_estimators": "122.21742728992572", "eta": "0.06452090304204987", "max_depth": "11.197056874649611", "subsample": "0.941614515559209", "colsample_bytree": "0.8311989040672406"}}

@ -1,8 +1,8 @@
# first line: 541
# first line: 586
@memory.cache
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
# initialize model
print('loopingVehicle')
print('loopingNew')
n_estimators = int(n_estimators)
max_depth = int(max_depth)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)

@ -0,0 +1 @@
{"duration": 48.241634130477905, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 ... F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41\n0 1.185 9.085 0 0 2.263 3 0 3.642 0.000 0 1 9.902 46.7 1 ... 0 2 0 0.000 1 0 0 0.014 0 4.054 0 0 0 0\n1 0.000 8.179 2 0 2.194 0 6 3.526 0.000 6 0 10.054 35.1 0 ... 0 0 0 0.000 2 0 0 0.000 0 3.489 0 4 0 0\n2 0.762 8.297 0 3 2.424 0 0 3.339 21.884 0 0 10.226 42.1 0 ... 0 0 8 -0.686 3 0 0 0.004 0 3.693 0 0 0 0\n3 1.747 9.673 0 2 2.690 23 0 4.645 9.855 0 1 12.353 31.6 0 ... 0 0 2 -4.617 0 0 11 0.000 0 3.993 0 0 0 1\n4 1.824 9.825 0 2 2.700 27 0 4.795 9.894 0 1 12.519 31.8 0 ... 0 0 2 -4.724 0 0 13 0.000 0 4.005 0 0 0 1\n.. ... ... .. .. ... .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n832 1.125 7.878 0 1 2.136 0 0 2.990 0.000 0 0 9.311 43.8 0 ... 0 1 2 0.000 1 0 0 0.045 0 3.573 0 0 0 0\n833 1.187 8.046 1 1 2.222 0 2 3.105 0.000 2 0 9.668 38.9 0 ... 0 2 2 0.000 1 0 0 -0.025 0 3.666 0 2 0 0\n834 0.625 8.901 0 2 2.499 0 0 3.745 24.203 0 0 10.681 58.3 0 ... 0 0 8 -0.128 6 0 0 0.000 0 3.942 0 0 0 0\n835 3.866 8.778 0 6 2.361 0 0 4.201 11.747 0 1 10.735 32.4 0 ... 0 0 9 -0.347 1 0 0 0.000 0 3.497 0 0 0 0\n836 3.706 8.680 0 6 2.361 0 0 4.127 11.724 0 1 10.694 31.4 0 ... 0 0 9 -0.338 1 0 0 0.000 0 3.497 0 0 0 0\n\n[837 rows x 41 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}

@ -477,7 +477,7 @@ export default Vue.extend({
EventBus.$emit('SlidersCall')
this.keySlider = false
}
//EventBus.$emit('ConfirmDataSet') // REMOVE THAT!
EventBus.$emit('ConfirmDataSet') // REMOVE THAT!
} else {
EventBus.$emit('dataSpace', this.correlResul)
EventBus.$emit('quad', this.correlResul)

@ -312,14 +312,6 @@ def retrieveFileName():
DataResultsRaw.append(item)
DataRawLength = len(DataResultsRaw)
DataResultsRawTest = []
if (StanceTest):
for index, item in enumerate(CollectionDBTest):
item['_id'] = str(item['_id'])
item['InstanceID'] = index
DataResultsRawTest.append(item)
DataRawLengthTest = len(DataResultsRawTest)
DataResultsRawTest = []
DataResultsRawExternal = []
if (StanceTest):
@ -554,6 +546,8 @@ def dataSetSelection():
OrignList = keepOriginalFeatures.columns.values.tolist()
XData.columns = ['F'+str(idx+1) for idx, col in enumerate(XData.columns)]
XDataTest.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataTest.columns)]
XDataExternal.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataExternal.columns)]
global XDataStored, yDataStored
XDataStored = XData.copy()
@ -586,7 +580,7 @@ def create_global_function():
@memory.cache
def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree):
# initialize model
print('loopingVehicle')
print('loopingNew')
n_estimators = int(n_estimators)
max_depth = int(max_depth)
model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False)
@ -793,7 +787,7 @@ def executeModel(exeCall, flagEx, nodeTransfName):
num_cores = multiprocessing.cpu_count()
inputsSc = ['accuracy','precision_weighted','recall_weighted']
print(XData)
#print(XData)
flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(estimator,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc))
scoresAct = [item for sublist in flat_results for item in sublist]
@ -831,19 +825,18 @@ def executeModel(exeCall, flagEx, nodeTransfName):
else:
scores.append(0)
#print(scores)
global StanceTest
if (StanceTest):
sclf.fit(XData, yData)
y_pred = sclf.predict(XDataTest)
y_pred = estimator.predict(XDataTest)
print('Test data set')
print(classification_report(yDataTest, y_pred))
y_pred = sclf.predict(XDataExternal)
y_pred = estimator.predict(XDataExternal)
print('External data set')
print(classification_report(yDataExternal, y_pred))
print(scores)
return 'Everything Okay'
@app.route('/data/RequestBestFeatures', methods=["GET", "POST"])
@ -2044,7 +2037,7 @@ def CompareFunPy():
columnsKeep.append(columnsKeepID[2]+'/'+columnsKeepID[1]+'/'+columnsKeepID[0])
else:
pass
print(XDataGen)
#print(XDataGen)
XDataGen = XDataGen.replace([np.inf, -np.inf], np.nan)
XDataGen = XDataGen.fillna(0)
featureCompareData = estimatorFeatureSelection(XDataGen, estimator)

Loading…
Cancel
Save