parent b37ba796a0
commit 3e9d842d71
  1. BIN
      __pycache__/run.cpython-38.pyc
  2. BIN
      cachedir/joblib/run/estimatorFeatureSelection/102a1bd33dacf6442162458515f1b821/output.pkl
  3. 1
      cachedir/joblib/run/estimatorFeatureSelection/1a6b490454e7bf1073feef75f2d33016/metadata.json
  4. 1
      cachedir/joblib/run/estimatorFeatureSelection/5c72fbb8672da4068e4afdcb2d8698ee/metadata.json
  5. 1
      cachedir/joblib/run/estimatorFeatureSelection/62f538b973da29371eea779458e0ce55/metadata.json
  6. BIN
      cachedir/joblib/run/estimatorFeatureSelection/a1c40fa32287eaf31f1440b2abb2ea41/output.pkl
  7. BIN
      cachedir/joblib/run/estimatorFeatureSelection/fb92b7827e040d13473b06ab1dfc6004/output.pkl
  8. 4
      frontend/src/components/DataSetSlider.vue
  9. 7
      frontend/src/components/DataSpace.vue
  10. 2
      frontend/src/components/Main.vue
  11. 2
      frontend/src/components/Results.vue
  12. 8
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 6.107879161834717, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F9\n0 7 8 7 8 9 10 10 10\n1 4 5 2 3 4 3 3 3\n2 5 8 7 10 5 7 5 9\n3 3 7 6 4 4 4 6 1\n4 1 10 4 6 4 7 7 10\n.. .. .. .. .. .. .. .. ..\n694 1 1 2 3 1 1 1 1\n695 1 3 2 1 1 1 1 1\n696 1 3 2 1 2 1 1 1\n697 1 3 3 1 1 1 1 2\n698 1 2 2 1 1 1 1 1\n\n[699 rows x 8 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=1, eta=0.0989957156047863,\n gamma=0, gpu_id=-1, importance_type='gain',\n interaction_constraints='', learning_rate=0.0989957154,\n max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,\n monotone_constraints='()', n_estimators=68, n_jobs=12,\n num_parallel_tree=1, probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=1, silent=True,\n subsample=1, tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}

@ -0,0 +1 @@
{"duration": 2.5904359817504883, "input_args": {"Data": " F1 F2 F4 F5 F6 F7_l2 F9\n0 7 8 8 9 10 3.321928 10\n1 4 5 3 4 3 1.584963 3\n2 5 8 10 5 7 2.321928 9\n3 3 7 4 4 4 2.584963 1\n4 1 10 6 4 7 2.807355 10\n.. .. .. .. .. .. ... ..\n694 1 1 3 1 1 0.000000 1\n695 1 3 1 1 1 0.000000 1\n696 1 3 1 2 1 0.000000 1\n697 1 3 1 1 1 0.000000 2\n698 1 2 1 1 1 0.000000 1\n\n[699 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=1, eta=0.0989957156047863,\n gamma=0, gpu_id=-1, importance_type='gain',\n interaction_constraints='', learning_rate=0.0989957154,\n max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,\n monotone_constraints='()', n_estimators=68, n_jobs=12,\n num_parallel_tree=1, probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=1, silent=True,\n subsample=1, tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}

@ -0,0 +1 @@
{"duration": 3.18937611579895, "input_args": {"Data": " F1 F2 F4 F5 F6 F7 F9\n0 7 8 8 9 10 10 10\n1 4 5 3 4 3 3 3\n2 5 8 10 5 7 5 9\n3 3 7 4 4 4 6 1\n4 1 10 6 4 7 7 10\n.. .. .. .. .. .. .. ..\n694 1 1 3 1 1 1 1\n695 1 3 1 1 1 1 1\n696 1 3 1 2 1 1 1\n697 1 3 1 1 1 1 2\n698 1 2 1 1 1 1 1\n\n[699 rows x 7 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=1, eta=0.0989957156047863,\n gamma=0, gpu_id=-1, importance_type='gain',\n interaction_constraints='', learning_rate=0.0989957154,\n max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,\n monotone_constraints='()', n_estimators=68, n_jobs=12,\n num_parallel_tree=1, probability=True, random_state=42,\n reg_alpha=0, reg_lambda=1, scale_pos_weight=1, silent=True,\n subsample=1, tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}

@ -3,10 +3,10 @@
<b-col cols="2" style="margin-left: -35px">
<label id="data" for="param-dataset" data-toggle="tooltip" data-placement="right" title="Tip: use one of the data sets already provided or upload a new file.">{{ dataset }}</label>
<select id="selectFile" @change="selectDataSet()">
<option value="BreastC.csv" selected>Breast cancer</option>
<option value="BreastC.csv">Breast cancer</option>
<option value="DiabetesC.csv">Indian diabetes</option>
<option value="HeartC.csv">Heart disease</option>
<option value="IrisC.csv">Iris flower</option>
<option value="IrisC.csv" selected>Iris flower</option>
<option value="local">Upload file</option>
</select>
</b-col>

@ -118,8 +118,10 @@ export default {
.attr('fill', 'white');
var axis = d3.svg.axis().scale(xScale)
chart.append("g").attr("class", "xAxis").call(axis)
chart.append("g").style({'stroke': 'black', 'fill': 'none', 'stroke-width': '6px'}).attr("class", "xAxis").call(axis);
d3.selectAll('g.tick').style('stroke-width', 0);
// chart.append("line")
// .attr("x1", width/4-25).attr("x2", width/4-25)
// .attr("y1", 25).attr("y2", height)
@ -563,7 +565,7 @@ text {
}
#AllClass { position: relative}
#BeeSwarm { position: absolute; top: 0; left: 0; z-index: 1}
#BeeSwarm { position: absolute; top: 0; left: 0; z-index: 1;}
#Sliders { position: absolute; top: 0; left: 0; z-index: 2}
#NoAction { position: absolute; top: 0; left: 0; z-index: -1}
#TextLabels {position: absolute; top: 0; left: 0; z-index: 1}
@ -572,5 +574,4 @@ text {
cursor: pointer;
stroke: yellow;
}
</style>

@ -149,7 +149,7 @@ export default Vue.extend({
DataResults: '',
keyNow: 1,
instancesImportance: '',
RetrieveValueFile: 'BreastC', // this is for the default data set
RetrieveValueFile: 'IrisC', // this is for the default data set
SelectedFeaturesPerClassifier: '',
FinalResults: 0,
selectedAlgorithm: '',

@ -1,6 +1,6 @@
<template>
<div>
<div id="HistoryPlot"></div>
<div id="HistoryPlot" ></div>
<div id="LinePlot"></div>
</div>
</template>

@ -698,11 +698,11 @@ def featFun (clfLocalPar,DataLocalPar,yDataLocalPar):
return PerFeatureAccuracyLocalPar
location = './cachedir'
memory = Memory(location, verbose=0)
# location = './cachedir'
# memory = Memory(location, verbose=0)
# calculating for all algorithms and models the performance and other results
@memory.cache
# # calculating for all algorithms and models the performance and other results
# @memory.cache
def estimatorFeatureSelection(Data, clf):
resultsFS = []

Loading…
Cancel
Save