FeatureEnVi: Visual Analytics for Feature Engineering Using Stepwise Selection and Semi-Automatic Extraction Approaches
https://doi.org/10.1109/TVCG.2022.3141040
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1 line
3.7 KiB
1 line
3.7 KiB
3 years ago
|
{"duration": 39.3106529712677, "input_args": {"Data": " F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26_p2 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41\n0 1.185 9.085 0 0 2.263 3 0 3.642 0.000 0 1 9.902 46.7 1 3.1934 1.359 0 1.034 1.476 3 3 0 0 1.100 2.483 23.280625 0 0 2 0 0.000 1 0 0 0.014 0 4.054 0 0 0 0\n1 0.000 8.179 2 0 2.194 0 6 3.526 0.000 6 0 10.054 35.1 0 1.8929 1.209 0 0.974 4.130 0 0 0 0 1.139 1.744 20.811844 0 0 0 0 0.000 2 0 0 0.000 0 3.489 0 4 0 0\n2 0.762 8.297 0 3 2.424 0 0 3.339 21.884 0 0 10.226 42.1 0 2.3934 1.204 0 1.027 1.027 0 0 0 2 1.120 2.773 24.820324 0 0 0 8 -0.686 3 0 0 0.004 0 3.693 0 0 0 0\n3 1.747 9.673 0 2 2.690 23 0 4.645 9.855 0 1 12.353 31.6 0 7.7233 0.906 0 1.291 5.094 0 0 0 0 1.348 5.741 39.891856 1 0 0 2 -4.617 0 0 11 0.000 0 3.993 0 0 0 1\n4 1.824 9.825 0 2 2.700 27 0 4.795 9.894 0 1 12.519 31.8 0 7.9184 0.906 0 1.292 5.891 0 0 0 0 1.350 5.742 40.068900 1 0 0 2 -4.724 0 0 13 0.000 0 4.005 0 0 0 1\n.. ... ... .. .. ... .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...\n832 1.125 7.878 0 1 2.136 0 0 2.990 0.000 0 0 9.311 43.8 0 3.0778 1.253 0 0.991 1.481 1 0 0 0 1.117 2.146 20.241001 0 0 1 2 0.000 1 0 0 0.045 0 3.573 0 0 0 0\n833 1.187 8.046 1 1 2.222 0 2 3.105 0.000 2 0 9.668 38.9 0 3.2726 1.230 0 0.998 1.358 2 0 0 0 1.132 2.315 22.877089 2 0 2 2 0.000 1 0 0 -0.025 0 3.666 0 2 0 0\n834 0.625 8.901 0 2 2.499 0 0 3.745 24.203 0 0 10.681 58.3 0 2.3715 1.312 0 1.008 1.262 4 0 0 0 1.087 2.500 28.196100 0 0 0 8 -0.128 6 0 0 0.000 0 3.942 0 0 0 0\n835 3.866 8.778 0 6 2.361 0 0 4.201 11.747 0 1 10.735 32.4 0 1.9452 1.166 0 0.992 10.593 0 0 0 0 1.140 2.300 24.770529 3 0 0 9 -0.347 1 0 0 0.000 0 3.497 0 0 0 0\n836 3.706 8.680 0 6 2.361 0 0 4.127 11.724 0 1 10.694 31.4 0 1.9472 1.153 0 0.993 9.639 0 0 0 0 1.143 2.321 24.770529 3 0 0 9 -0.338 1 0 0 0.000 0 3.497 0 0 0 0\n\n[837 rows x 41 columns]", "clf": "XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,\n colsample_bynode=1, colsample_bytree=0.8702434039276976,\n eta=0.2593099998788648, gamma=0, gpu_id=-1,\n importance_type='gain', interaction_constraints='',\n learning_rate=0.259310007, max_delta_step=0, max_depth=6,\n min_child_weight=1, missing=nan, monotone_constraints='()',\n n_estimators=188, n_jobs=12, num_parallel_tree=1,\n probability=True, random_state=42, reg_alpha=0, reg_lambda=1,\n scale_pos_weight=1, silent=True, subsample=0.9972633684544026,\n tree_method='exact', use_label_encoder=False,\n validate_parameters=1, verbosity=0)"}}
|