#!flask/bin/python import sys import os from flask import Flask, request, Response, jsonify from flask_cors import CORS from multiprocessing import Pool from scipy.spatial import procrustes from scipy.spatial import distance from sklearn_extra.cluster import KMedoids from sklearn import metrics from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.neighbors import KNeighborsClassifier from scipy import spatial from scipy import stats import numpy as np import pandas as pd import random, json import bhtsne app = Flask(__name__) CORS(app) @app.route('/resetAll', methods = ['POST']) def Reset(): print('mpike') global dataProc dataProc = [] global D_highSpace D_highSpace = [] global overalProjectionsNumber overalProjectionsNumber = [] global projectionsAll projectionsAll = [] global SelectedListofParams SelectedListofParams = [] global SelectedProjectionsReturn SelectedProjectionsReturn = [] global clusterIndex clusterIndex = [] global convertLabels convertLabels = [] global D_lowSpaceList D_lowSpaceList = [] global KeepKs KeepKs = [] global metricsMatrixEntire metricsMatrixEntire = [] global metricsMatrix metricsMatrix = [] global metricsMatrixSel metricsMatrixSel = [] global metricsMatrixEntireSel metricsMatrixEntireSel = [] return 'Reset' # NOTE: Only works with labeled data def neighborhood_hit(X, y, k): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X, y) neighbors = knn.kneighbors(X, return_distance=False) yPred = knn.predict(X) return np.mean(np.mean((yPred[neighbors] == np.tile(yPred.reshape((-1, 1)), k)).astype('uint8'), axis=1)) def trustworthiness(D_high, D_low, k): n = D_high.shape[0] nn_orig = D_high.argsort() nn_proj = D_low.argsort() knn_orig = nn_orig[:, :k + 1][:, 1:] knn_proj = nn_proj[:, :k + 1][:, 1:] sum_i = 0 for i in range(n): U = np.setdiff1d(knn_proj[i], knn_orig[i]) sum_j = 0 for j in range(U.shape[0]): sum_j += np.where(nn_orig[i] == U[j])[0] - k sum_i += sum_j return float((1 - (2 / (n * k * (2 * n - 3 * k - 1)) * sum_i)).squeeze()) def continuity(D_high, D_low, k): n = D_high.shape[0] nn_orig = D_high.argsort() nn_proj = D_low.argsort() knn_orig = nn_orig[:, :k + 1][:, 1:] knn_proj = nn_proj[:, :k + 1][:, 1:] sum_i = 0 for i in range(n): V = np.setdiff1d(knn_proj[i], knn_orig[i]) sum_j = 0 for j in range(V.shape[0]): sum_j += np.where(nn_proj[i] == V[j])[0] - k sum_i += sum_j return float((1 - (2 / (n * k * (2 * n - 3 * k - 1)) * sum_i)).squeeze()) def normalized_stress(D_high, D_low): return np.sum((D_high - D_low)**2) / np.sum(D_high**2) / 100 def shepard_diagram_correlation(D_high, D_low): if len(D_high.shape) > 1: D_high = spatial.distance.squareform(D_high) if len(D_low.shape) > 1: D_low = spatial.distance.squareform(D_low) return stats.spearmanr(D_high, D_low)[0] def preprocess(data): dataPandas = pd.DataFrame(data) dataPandas.dropna() for column in dataPandas: if ('*' in column): gatherLabels = dataPandas[column] del dataPandas[column] length = len(dataPandas.columns) dataNP = dataPandas.to_numpy() return dataNP, length, gatherLabels def multi_run_wrapper(args): embedding_array = bhtsne.run_bh_tsne(*args) return embedding_array def procrustesFun(projections): similarityList = [] for proj1 in projections: disparityList = [] for proj2 in projections: mtx1, mtx2, disparity = procrustes(proj1, proj2) if np.array_equal(proj1, proj2): disparityList.append(0) else: disparityList.append(1/disparity) similarityList.append(disparityList) clusterIndex = Clustering(similarityList) return clusterIndex def Clustering(similarity): similarityNP = np.array(similarity) n_clusters = 36 kmedoids = KMedoids(n_clusters=n_clusters, random_state=0, metric='precomputed').fit(similarityNP) global dataProc clusterIndex = [] for c in range(n_clusters): cluster_indices = np.argwhere(kmedoids.labels_ == c).reshape(-1,) D_c = similarityNP[cluster_indices][:, cluster_indices] center = np.argmin(np.sum(D_c, axis=0)) clusterIndex.append(cluster_indices[center]) return clusterIndex @app.route('/receiver', methods = ['POST']) def calculateGrid(): data = request.get_data().decode('utf8').replace("'", '"') data = json.loads(data) global dataProc dataProc, length, labels = preprocess(data) global D_highSpace D_highSpace = distance.squareform(distance.pdist(dataProc)) DEFAULT_NO_DIMS = 2 INITIAL_DIMENSIONS = 50 DEFAULT_PERPLEXITY = 50 DEFAULT_THETA = 0.5 EMPTY_SEED = -1 VERBOSE = True DEFAULT_USE_PCA = False perplexity = [25,30] # 10 perplexity learning_rate = [10,20,30,40,50,60] # 15 learning rate n_iter = [200,250,300,350] # 7 iterations global overalProjectionsNumber overalProjectionsNumber = 0 overalProjectionsNumber = len(perplexity)*len(learning_rate)*len(n_iter) global projectionsAll pool = Pool() listofParamsPlusData = [] listofParamsAll= [] for k in n_iter: for j in learning_rate: for i in perplexity: listofParamsPlusData.append((dataProc,DEFAULT_NO_DIMS,length,i,j,EMPTY_SEED,VERBOSE,DEFAULT_USE_PCA,k)) listofParamsAll.append((i,j,k)) projectionsAll = pool.map(multi_run_wrapper, listofParamsPlusData) pool.close() pool.join() global SelectedListofParams SelectedListofParams = [] global SelectedProjectionsReturn SelectedProjectionsReturn = [] global clusterIndex clusterIndex = procrustesFun(projectionsAll) metricNeigh = [] metricTrust = [] metricCont = [] metricStress = [] metricShepCorr = [] global convertLabels convertLabels = [] for index, label in enumerate(labels): if (label == 0): convertLabels.append(0) elif (label == 1): convertLabels.append(1) elif (label == 'Benign'): convertLabels.append(0) elif (label == 'Malignant'): convertLabels.append(1) elif (label == 'Iris-setosa'): convertLabels.append(0) elif (label == 'Iris-versicolor'): convertLabels.append(1) elif (label == 'Iris-virginica'): convertLabels.append(2) else: pass global D_lowSpaceList D_lowSpaceList = [] global KeepKs KeepKs = [] for index in clusterIndex: SelectedProjectionsReturn.append(projectionsAll[index].tolist()) SelectedListofParams.append(listofParamsAll[index]) D_lowSpace = distance.squareform(distance.pdist(projectionsAll[index])) D_lowSpaceList.append(D_lowSpace) k = listofParamsAll[index][0] # k = perplexity KeepKs.append(k) resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, k) resultTrust = trustworthiness(D_highSpace, D_lowSpace, k) resultContinuity = continuity(D_highSpace, D_lowSpace, k) resultStress = normalized_stress(D_highSpace, D_lowSpace) resultShep = shepard_diagram_correlation(D_highSpace, D_lowSpace) metricNeigh.append(resultNeigh) metricTrust.append(resultTrust) metricCont.append(resultContinuity) metricStress.append(resultStress) metricShepCorr.append(resultShep) max_value_neigh = max(metricNeigh) min_value_neigh = min(metricNeigh) max_value_trust = max(metricTrust) min_value_trust = min(metricTrust) max_value_cont = max(metricCont) min_value_cont = min(metricCont) max_value_stress = max(metricStress) min_value_stress = min(metricStress) max_value_shep = max(metricShepCorr) min_value_shep = min(metricShepCorr) global metricsMatrixEntire metricsMatrixEntire = [] for index, data in enumerate(metricTrust): valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh) valueTrust = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust) valueCont = (metricCont[index] - min_value_cont) / (max_value_cont - min_value_cont) valueStress = (metricStress[index] - min_value_stress) / (max_value_stress - min_value_stress) valueShep = (metricShepCorr[index] - min_value_shep) / (max_value_shep - min_value_shep) metricsMatrixEntire.append([valueNeigh,valueTrust,valueCont,valueStress,valueShep]) sortNeigh = sorted(range(len(metricNeigh)), key=lambda k: metricNeigh[k], reverse=True) sortTrust = sorted(range(len(metricTrust)), key=lambda k: metricTrust[k], reverse=True) sortCont = sorted(range(len(metricCont)), key=lambda k: metricCont[k], reverse=True) sortStress = sorted(range(len(metricStress)), key=lambda k: metricStress[k], reverse=True) sortShepCorr = sorted(range(len(metricShepCorr)), key=lambda k: metricShepCorr[k], reverse=True) global metricsMatrix metricsMatrix = [] metricsMatrix.append(sortNeigh) metricsMatrix.append(sortTrust) metricsMatrix.append(sortCont) metricsMatrix.append(sortStress) metricsMatrix.append(sortShepCorr) return 'OK' @app.route('/sender') def background_process(): global SelectedProjectionsReturn global projectionsAll global overalProjectionsNumber global metricsMatrix global metricsMatrixEntire while (len(projectionsAll) != overalProjectionsNumber): pass return jsonify({ 'projections': SelectedProjectionsReturn, 'parameters': SelectedListofParams, 'metrics': metricsMatrix, 'metricsEntire': metricsMatrixEntire }) @app.route('/receiverOptimizer', methods = ['POST']) def OptimizeSelection(): dataReceived= request.get_data().decode('utf8').replace("'", '"') dataReceived = json.loads(dataReceived) dataSelected = [] for data in dataReceived: if data != None: dataSelected.append(data) metricNeigh = [] metricTrust = [] metricCont = [] metricStress = [] metricShepCorr = [] for index, loop in enumerate(clusterIndex): resultNeigh = neighborhood_hit(np.array(projectionsAll[index]), convertLabels, KeepKs[index]) resultTrust = trustworthiness(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index]) resultContinuity = continuity(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :], KeepKs[index]) resultStress = normalized_stress(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :]) resultShep = normalized_stress(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :]) #resultShep = shepard_diagram_correlation(D_highSpace[dataSelected, :], D_lowSpaceList[index][dataSelected, :]) metricNeigh.append(resultNeigh) metricTrust.append(resultTrust) metricCont.append(resultContinuity) metricStress.append(resultStress) metricShepCorr.append(resultShep) max_value_neigh = max(metricNeigh) min_value_neigh = min(metricNeigh) max_value_trust = max(metricTrust) min_value_trust = min(metricTrust) max_value_cont = max(metricCont) min_value_cont = min(metricCont) max_value_stress = max(metricStress) min_value_stress = min(metricStress) max_value_shep = max(metricShepCorr) min_value_shep = min(metricShepCorr) global metricsMatrixEntireSel metricsMatrixEntireSel = [] for index, data in enumerate(metricTrust): valueNeigh = (metricNeigh[index] - min_value_neigh) / (max_value_neigh - min_value_neigh) valueTrust = (metricTrust[index] - min_value_trust) / (max_value_trust - min_value_trust) valueCont = (metricCont[index] - min_value_cont) / (max_value_cont - min_value_cont) valueStress = (metricStress[index] - min_value_stress) / (max_value_stress - min_value_stress) valueShep = (metricShepCorr[index] - min_value_shep) / (max_value_shep - min_value_shep) metricsMatrixEntireSel.append([valueNeigh,valueTrust,valueCont,valueStress,valueShep]) sortNeigh = sorted(range(len(metricNeigh)), key=lambda k: metricNeigh[k], reverse=True) sortTrust = sorted(range(len(metricTrust)), key=lambda k: metricTrust[k], reverse=True) sortCont = sorted(range(len(metricCont)), key=lambda k: metricCont[k], reverse=True) sortStress = sorted(range(len(metricStress)), key=lambda k: metricStress[k], reverse=True) sortShepCorr = sorted(range(len(metricShepCorr)), key=lambda k: metricShepCorr[k], reverse=True) global metricsMatrixSel metricsMatrixSel = [] metricsMatrixSel.append(sortNeigh) metricsMatrixSel.append(sortTrust) metricsMatrixSel.append(sortCont) metricsMatrixSel.append(sortStress) metricsMatrixSel.append(sortShepCorr) return 'OK' @app.route('/senderOptimizer') def SendOptimizedProjections(): global metricsMatrixSel global metricsMatrixEntireSel return jsonify({'metrics': metricsMatrixSel, 'metricsEntire': metricsMatrixEntireSel }) if __name__ == '__main__': app.run("0.0.0.0", "5000")