// t-SNE Visualization and global variables // This variable is used when a new file is upload by a user. var new_file; // The basic variables in order to execute t-SNE (opt is perplexity and learning rate). var tsne; var opt; var step_counter; var max_counter; var runner; // These variables are initialized here in order to store the final dataset, the points, the cost, the cost for each iteration, the beta values, the positions, the 2D points positions, // In addition, there is an array which keeps the initial information of the points (i.e., initial state), the data features (with the label of the category plus the id of the point), the data features without the category (only numbers). var final_dataset; var points = []; var cost = []; var cost_each; var beta_all = []; var x_position = []; var y_position = []; var points2d = []; var ArrayContainsDataFeatures = []; var ArrayContainsDataFeaturesCleared = []; var InitialStatePoints = []; // The distances in the high dimensional space and in the 2D space. All the labels that were found in the selected data set. var dists; var dists2d; var all_labels; // These are the dimensions for the Overview view and the Main view var dim = document.getElementById('tSNEcanvas').offsetWidth; var dimensions = document.getElementById('modtSNEcanvas').offsetWidth; // Category = the name of the category if it exists. The user has to add an asterisk ("*") mark in order to let the program identify this feature as a label/category name. // ColorsCategorical = the categorical colors (maximum value = 10). var Category; var ColorsCategorical; // Schema Investigation // svgClick = Click a left mouse click in order to add a point. // prevRightClick = When right click is pressed prevent any other action. Lock the current schema. // if flagForSchema is false then send a message to the user that he/she has to: "Please, draw a schema first!"); var svgClick; var prevRightClick; var flagForSchema = false; // Save the parameters for the current analysis, save the overallCost, and store in the "input" variable all the points and points2D. var ParametersSet = []; var overallCost; var input; // These parameters are initiated here for the annotations. var ringNotes = []; var gAnnotationsAll = []; var AnnotationsAll = []; var draggable = []; // These variables are set here in order to instatiate the very first Three.js scene. var MainCanvas; var Child; var renderer; var fov = 21; var near = 10; var far = 7000; var camera; var scene; // Initialize the Schema Investigation variables. var Arrayx = []; var Arrayy = []; var XYDistId = []; var Arrayxy = []; var DistanceDrawing1D = []; var allTransformPoints = []; var p; var pFinal = []; var paths; var path; var ArrayLimit = []; var minimum; var correlationResults = []; var ArrayContainsDataFeaturesLimit = []; // This function is executed when the factory button is pressed in order to bring the visualization in the initial state. function FactoryReset(){ // Remove the Schema Investigation flagForSchema = false; Arrayx = []; Arrayy = []; XYDistId = []; Arrayxy = []; DistanceDrawing1D = []; allTransformPoints = []; pFinal = []; ArrayLimit = []; correlationResults = []; ArrayContainsDataFeaturesLimit = []; prevRightClick = false; // Remove the previously drawn scene by Three.js var oldcanvOver = document.getElementById('tSNEcanvas'); var contxOver = oldcanvOver.getContext('experimental-webgl'); contxOver.clear(contxOver.COLOR_BUFFER_BIT); scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // ReEnable lasso interaction lassoEnable(); // Set the default data set into iris.csv and return the main execution button into the initial state document.getElementById("param-dataset").value = "iris.csv"; document.getElementById('file-input').value = ""; document.getElementById("ExecuteBut").innerHTML = "Execute new t-SNE analysis"; // Remove every d3 svg that was already drawn on the screen d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); d3.selectAll("#SvgAnnotator > *").remove(); d3.selectAll("#sheparheat > *").remove(); d3.selectAll("#knnBarChart > *").remove(); d3.select("#data").select("input").remove(); // Remove the selection field. // Remove all the legends d3.selectAll("#legend1 > *").remove(); d3.selectAll("#legend2 > *").remove(); d3.selectAll("#legend3 > *").remove(); // Remove the extra information such as cost, number of iterations, number of dimensions, and number of samples $("#cost").html(""); $("#datasetDetails").html(""); $("#kNNDetails").html(""); // Set all parameters into their default values document.getElementById("param-perplexity-value").value = 30; document.getElementById("param-learningrate-value").value = 10; document.getElementById("param-maxiter-value").value = 500; document.getElementById("param-lim-value").value = 2; document.getElementById("param-corr-value").value = 150; document.getElementById("param-neighborHood").value = "color"; document.getElementById('selectionLabel').innerHTML = 'Size'; document.getElementById("param-distance").value = "euclideanDist"; document.getElementById("param-transform").value = "noTrans"; } // Load a previously executed analysis function. function loadAnalysis(){ document.getElementById('file-input').click(); document.getElementById("ExecuteBut").innerHTML = "Execute previous t-SNE analysis"; } // This function is being used when the user selects to upload a new data set. function getfile(file){ new_file = file; //uploaded data file } // Read the previous analysis, which the user wants to upload. function fetchVal(callback) { var file, fr; file = input.files[0]; fr = new FileReader(); fr.onload = function (e) { lines = e.target.result; callback(lines); }; fr.readAsText(file); } // Parse the analysis folder if requested or the csv file if we run a new execution. var getData = function() { let format; let value; if (typeof window.FileReader !== 'function') { alert("The file API is not supported on this browser yet."); } // Check if the input already exists, which means if we loaded a previous analysis input = document.getElementById("file-input"); if (!input) { alert("Could not find the file input element."); } else if (!input.files) { alert("This browser does not seem to support the `files` property of file inputs."); } else if (!input.files[0]) { value = document.getElementById("param-dataset").value; // Get the value of the data set format = value.split("."); //Get the format (e.g., [iris, csv]) if (format[value.split(".").length-1] == "csv") { // Parse the predefined files parseData("./data/"+value); } else{ parseData(new_file, init); // Parse new files } } else { fetchVal(function(lines){ // Load an analysis and parse the previous points and parameters information. AnalaysisResults = JSON.parse(lines); length = (AnalaysisResults.length - 7) / 2; ParametersSet = AnalaysisResults.slice(length*2+1, length*2+7); value = document.getElementById("param-dataset").value = ParametersSet[0]; format = value.split("."); //Get the actual format if (format[value.split(".").length-1] == "csv") { // Check if the file is in the right folder, i.e., ./data/{file} $.ajax({ type: 'HEAD', url: './data/'+value, complete: function (xhr){ if (xhr.status == 404){ alert(xhr.statusText); // Not found alert("Please, place your new data set into the ./data folder of the implementation."); } } }); parseData("./data/"+value); } }); } } // Parse the data set with the use of PapaParse. function parseData(url) { Papa.parse(url, { download: true, header: true, dynamicTyping: true, skipEmptyLines: true, complete: function(results) { results.data = results.data.filter(function (el) { var counter = 0; for(key in el) { if(el.hasOwnProperty(key)) { var value = el[key]; if(typeof(value) !== 'number' || value === undefined || key === "Version"){ // We can add more limitations here if needed! We delete everything that we do not want. delete el[key]; }else{ el[counter] = el[key]; delete el[key]; counter = counter + 1; } } } return el; }); Papa.parse(url, { download: true, header: true, dynamicTyping: true, skipEmptyLines: true, complete: function(data) { doStuff(data.data); } }); function doStuff(results_all){ // results_all variable is all the columns multiplied by all the rows. // results.data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values." // results.meta.fields variable is all the features (columns) plus beta and cost strings. init(results.data, results_all, results.meta.fields); // Call the init() function that starts everything! } } }); } function setContinue(){ // This function allows the continuation of the analysis because it decreases the layer value of the annotator. d3v3.select("#SvgAnnotator").style("z-index", 1); } function setReset(){ // Reset only the filters which were applied into the data points. // Clear d3 SVGs d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); d3.selectAll("#SvgAnnotator > *").remove(); // Enable lasso interaction lassoEnable(); // Disable Schema Investigation flagForSchema = false; // Empty all the arrays that are related to Schema Investigation Arrayx = []; Arrayy = []; XYDistId = []; Arrayxy = []; DistanceDrawing1D = []; allTransformPoints = []; pFinal = []; ArrayLimit = []; correlationResults = []; ArrayContainsDataFeaturesLimit = []; prevRightClick = false; // Reset the points into their initial state for (var i=0; i < InitialStatePoints.length; i++){ InitialStatePoints[i].selected = true; InitialStatePoints[i].starplot = false; InitialStatePoints[i].schemaInv = false; } redraw(InitialStatePoints); } function setReInitialize(){ // Change between color-encoding and size-encoding mapped to 1/sigma and KLD. if (document.getElementById('selectionLabel').innerHTML == 'Size'){ document.getElementById('selectionLabel').innerHTML = 'Color'; } else{ document.getElementById('selectionLabel').innerHTML = 'Size'; } // Clear d3 SVGs d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); d3.selectAll("#SvgAnnotator > *").remove(); // Clear d3 SVGs d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); d3.selectAll("#SvgAnnotator > *").remove(); // Enable lasso interaction lassoEnable(); // Disable Schema Investigation flagForSchema = false; // Empty all the arrays that are related to Schema Investigation Arrayx = []; Arrayy = []; XYDistId = []; Arrayxy = []; DistanceDrawing1D = []; allTransformPoints = []; pFinal = []; ArrayLimit = []; correlationResults = []; ArrayContainsDataFeaturesLimit = []; prevRightClick = false; // Reset the points into their initial state for (var i=0; i < InitialStatePoints.length; i++){ InitialStatePoints[i].selected = true; InitialStatePoints[i].starplot = false; } redraw(InitialStatePoints); } function setLayerProj(){ // The main Layer becomes the projection d3.select("#modtSNEcanvas").style("z-index", 2); d3.select("#modtSNEcanvas_svg").style("z-index", 1); d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 1); d3.select("#SvgAnnotator").style("z-index", 1); } function setLayerComp(){ // The main Layer becomes the comparison (starplot) d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.select("#modtSNEcanvas_svg").style("z-index", 2); d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 1); d3.select("#modtSNEcanvas").style("z-index", 1); d3.select("#SvgAnnotator").style("z-index", 1); if (points.length){ lassoEnable(); } redraw(points); } function setLayerSche(){ // The main Layer becomes the correlation (barchart) d3.select("#modtSNEcanvas_svg_Schema").style("z-index", 2); d3.select("#modtSNEcanvas").style("z-index", 1); d3.select("#modtSNEcanvas_svg").style("z-index", 1); d3.select("#SvgAnnotator").style("z-index", 1); let c = 0; for (var i=0; i < points.length; i++){ points[i].selected = true; if (points[i].starplot == true){ c = c + 1; if (c == 1){ alert("The starplot visualization will be lost!"); // Alert the user that the starplot will be lost! } points[i].starplot = false; } } redraw(points); click(); if (prevRightClick == true){ flagForSchema = true; CalculateCorrel(); } } function lassoEnable(){ // The main Layer becomes the correlation (barchart) var interactionSvg = d3.select("#modtSNEcanvas_svg") .attr("width", dimensions) .attr("height", dimensions) .style('position', 'absolute') .style('top', 0) .style('left', 0); var lassoInstance = lasso() .on('end', handleLassoEnd) // Lasso ending point of the interaction .on('start', handleLassoStart); // Lasso starting point of the interaction interactionSvg.call(lassoInstance); } function setAnnotator(){ // Set a new annotation on top of the main visualization. var viewport2 = getViewport(); // Get the main viewport width and height. var vw2 = viewport2[0]; var vh2 = viewport2[1]; var textarea = document.getElementById("comment").value; d3.select("#SvgAnnotator").style("z-index", 3); var annotations = [ // Initialize the draggable ringNote. { "cx": 232, "cy": 123, "r": 103, "text": textarea, "textOffset": [ 114, 88 ] } ]; var ringNote = d3v3.ringNote() // Make it draggable. .draggable(true); var svgAnnotator = d3v3.select("#SvgAnnotator") .attr("width", vw2 * 0.5) .attr("height", vh2 * 0.888) .style("z-index", 3); var gAnnotations = svgAnnotator.append("g") .attr("class", "annotations") .call(ringNote, annotations); // Styling individual annotations based on bound data gAnnotations.selectAll(".annotation circle") .classed("shaded", function(d) { return d.shaded; }); ringNotes.push(ringNote); // Push all the ringNote and annotations and enable draggable property. gAnnotationsAll.push(gAnnotations); AnnotationsAll.push(annotations); draggable.push(true); } // Hide or show the controls d3.select("#controls") .on("change", function() { if(ringNotes[0]){ // If at least one ringNote exists, then enable or disable the draggable and radius changing controllers. for (var i = 0; i < ringNotes.length; i++){ ringNotes[i].draggable(draggable[i] = !draggable[i]); gAnnotationsAll[i] .call(ringNotes[i], AnnotationsAll[i]) .selectAll(".annotation circle") .classed("shaded", function(d) { return d.shaded; }); } } else{ // Get the checkbox. var checkBox = document.getElementById("controls"); // Unchecked! checkBox.checked = false; // Print a message to the user. alert("Cannot hide the annotators' controls because, currently, there are no annotations into the visual representation.") } }); // Three.js render loop for the very first scene. function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); } MainCanvas = document.getElementById('modtSNEcanvas'); Child = document.getElementById('modtSNEDiv'); // Add main canvas renderer = new THREE.WebGLRenderer({ canvas: MainCanvas }); renderer.setSize(dimensions, dimensions); Child.append(renderer.domElement); // Add a new empty (white) scene. scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // Set up camera. camera = new THREE.PerspectiveCamera( fov, dimensions / dimensions, near, far ); // Animate the scene. animate(); // The following function executes exactly after the data is successfully loaded. New EXECUTION! // results_all variable is all the columns multiplied by all the rows. // data variable is all the columns except strings, undefined values, or "Version" plus beta and cost values." // fields variable is all the features (columns) plus beta and cost strings. function init(data, results_all, fields) { // Remove all previously drawn SVGs d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); d3.selectAll("#SvgAnnotator > *").remove(); d3.selectAll("#sheparheat > *").remove(); d3.selectAll("#knnBarChart > *").remove(); // Clear the previous t-SNE overview canvas. var oldcanvOver = document.getElementById('tSNEcanvas'); var contxOver = oldcanvOver.getContext('experimental-webgl'); contxOver.clear(contxOver.COLOR_BUFFER_BIT); // Clear the previously drawn main visualization canvas. scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // Clear all the legends that were drawn. d3.selectAll("#legend1 > *").remove(); d3.selectAll("#legend2 > *").remove(); d3.selectAll("#legend3 > *").remove(); // Enable again the lasso interaction. lassoEnable(); // Empty all the Schema Investigation arrays. Arrayx = []; Arrayy = []; XYDistId = []; Arrayxy = []; DistanceDrawing1D = []; allTransformPoints = []; pFinal = []; ArrayLimit = []; correlationResults = []; ArrayContainsDataFeaturesLimit = []; prevRightClick = false; // Step counter set to 0 step_counter = 0; // Get the new parameters from the t-SNE parameters panel. max_counter = document.getElementById("param-maxiter-value").value; opt = {}; var fields; fields.push("beta"); fields.push("cost"); opt.epsilon = document.getElementById("param-learningrate-value").value; // Epsilon is learning rate (10 = default) opt.perplexity = document.getElementById("param-perplexity-value").value; // Roughly how many neighbors each point influences (30 = default) tsne = new tsnejs.tSNE(opt); // Set new t-SNE with specific perplexity. // Put the input variables into more properly named variables and store them. final_dataset = data; dataFeatures = results_all; var object; all_labels = []; // Get the dimension that contains an asterisk mark ("*"). This is our classification label. dataFeatures.filter(function(obj) { var temp = []; temp.push(Object.keys(obj)); for (var object in temp[0]){ if(temp[0][object].indexOf("*") != -1){ Category = temp[0][object]; return Category; } } }); for (let k = 0; k < dataFeatures.length; k++){ ArrayContainsDataFeatures.push(Object.values(dataFeatures[k]).concat(k)); object = []; for (let j = 0; j < Object.keys(dataFeatures[k]).length; j++){ if(typeof(Object.values(dataFeatures[k])[j]) == "number" && Object.keys(dataFeatures[k])[j] != Category){ // Only numbers and not the classification labels. object.push(Object.values(dataFeatures[k])[j]); } } ArrayContainsDataFeaturesCleared.push(object.concat(k)); // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number. } var valCategExists = 0; for (var i=0; i max_dist) max_dist = dist[i][j]; } } for(var i = 0; i < data.length; i++) { for(var j = 0; j < data.length; j++) { dist[i][j] /= max_dist; } } return dist; } // No tranformation function noTrans(data) { return data; } // Log tranformation function logTrans(data) { for(var i = 0; i < data.length; i++) { for(var d in data[0]) { if(d != Category) { X = data[i][d]; data[i][d] = Math.log10(X + 1); } } } return data; } // Asinh tranformation function asinhTrans(data) { for(var i = 0; i < data.length; i++) { for(var d in data[0]) { if(d != Category) { X = data[i][d]; data[i][d] = Math.log(X + Math.sqrt(X * X + 1)); } } } return data; } // Binarize tranformation function binTrans(data) { for(var i = 0; i < data.length; i++) { for(var d in data[0]) { if(d != Category) { X = data[i][d]; if(X > 0) data[i][d] = 1; if(X < 0) data[i][d] = 0; } } } return data; } // Compute the distances by applying the chosen distance functions and transformation functions. function computeDistances(data, distFunc, transFunc) { dist = eval(distFunc)(eval(transFunc)(data)); dist = normDist(data, dist); return dist; } // Function that updates embedding function updateEmbedding(AnalaysisResults) { points = []; points2d = []; if (AnalaysisResults == ""){ // Check if the embedding does not need to load because we had a previous analysis uploaded. var Y = tsne.getSolution(); // We receive the solution from the t-SNE var xExt = d3.extent(Y, d => d[0]); var yExt = d3.extent(Y, d => d[1]); var maxExt = [Math.min(xExt[0], yExt[0]), Math.max(xExt[1], yExt[1])]; var x = d3.scaleLinear() // Scale the x points into the canvas width/height .domain(maxExt) .range([10, +dimensions-10]); var y = d3.scaleLinear() // Scale the y points into the canvas width/height .domain(maxExt) .range([10, +dimensions-10]); for(var i = 0; i < final_dataset.length; i++) { x_position[i] = x(Y[i][0]); // x points position y_position[i] = y(Y[i][1]); // y points position points[i] = {id: i, x: x_position[i], y: y_position[i], beta: final_dataset[i].beta, cost: final_dataset[i].cost, selected: true, schemaInv: false, DimON: null, starplot: false}; // Create the points and points2D (2 dimensions) points2d[i] = {id: i, x: x_position[i], y: y_position[i], selected: true}; // and add everything that we know about the points (e.g., selected = true, starplot = false in the beginning and so on) points[i] = extend(points[i], ArrayContainsDataFeaturesCleared[i]); points[i] = extend(points[i], dataFeatures[i]); } } else{ points = AnalaysisResults.slice(0,dataFeatures.length); // Load the points from the previous analysis points2d = AnalaysisResults.slice(dataFeatures.length,2*dataFeatures.length); // Load the 2D points overallCost = AnalaysisResults.slice(dataFeatures.length*2,dataFeatures.length*2+1); // Load the overall cost ParametersSet = AnalaysisResults.slice(dataFeatures.length*2+1, dataFeatures.length*2+7); // Load the parameters and set the necessary values to the visualization of those parameters. $("#cost").html("Number of Iteration: " + ParametersSet[3] + ", Overall Cost: " + overallCost); $('#param-perplexity-value').text(ParametersSet[1]); $('#param-learningrate-value').text(ParametersSet[2]); $('#param-maxiter-value').text(ParametersSet[3]); document.getElementById("param-distance").value = ParametersSet[4]; document.getElementById("param-transform").value = ParametersSet[5]; } InitialStatePoints = points; // Initial Points will not be modified! function extend(obj, src) { // Call this function to add additional information to the points such as dataFeatures and Array which contains the data features without strings. for (var key in src) { if (src.hasOwnProperty(key)) obj[key] = src[key]; } return obj; // Return the different forms of the same data that we eventually store on those points. } // Run all the main functions (Shepard Heatmap, Overview t-SNE, and Beta/Cost t-SNE) Beta = 1/sigma, Cost = KLD(Q||P). ShepardHeatMap(); OverviewtSNE(points); BetatSNE(points); } function ShepardHeatMap () { // Remove any previous shepard heatmaps. d3.selectAll("#sheparheat > *").remove(); // Set the margin of the shepard heatmap var margin = { top: 35, right: 15, bottom: 15, left: 35 }, dim2 = Math.min(parseInt(d3.select("#sheparheat").style("width")), parseInt(d3.select("#sheparheat").style("height"))) width = dim2- margin.left - margin.right, height = dim2 - margin.top - margin.bottom, buckets = 10, // Set the number of buckets. gridSize = width / buckets, dim_1 = ["0.0", "0.2", "0.4", "0.6", "0.8", "1.0"], // Set the dimensions for the output and input distances. dim_2 = ["0.0", "0.4", "0.6", "1.0"] //I.e., the axes. // Create the svg for the shepard heatmap var svg = d3.select("#sheparheat") .attr("width", width + margin.left + margin.right) .attr("height", height + margin.top + margin.bottom) .append("g") .attr("transform", "translate(" + margin.left + "," + margin.top + ")"); var dist_list2d = []; // Distances lists empty var dist_list = []; dists2d = []; // Calculate the 2D distances. dists2d = computeDistances(points2d, document.getElementById("param-distance").value, document.getElementById("param-transform").value); for (var j=0; j shepard heatmap for (k=0; k data[l-1].dim2/10){ counnum[l] = counnum[l] + 1; } }else if (l % 10 == 1){ temp_loop = data[l].dim1-1; if (dist_list_all[0][k] < data[l].dim1/10 && dist_list_all[1][k] < data[l].dim2/10 && dist_list_all[0][k] > temp_loop/10){ counnum[l] = counnum[l] + 1; } }else{ if (dist_list_all[0][k] <= data[l].dim1/10 && dist_list_all[1][k] <= data[l].dim2/10 && dist_list_all[1][k] >= data[l-1].dim2/10 && dist_list_all[0][k] > temp_loop/10){ counnum[l] = counnum[l] + 1; } } } counter = counter + counnum[l]; } for (var m=0; m" + Math.round(d.value); }); tip(svg.append("g")); var dim1Labels = svg.selectAll(".dim1Label") // Label .data(dim_1) .enter().append("text") .text(function (d) { return d; }) .attr("x", 0) .attr("y", function (d, i) { return i * gridSize * 2; }) .style("text-anchor", "end") .style("font-size", "10px") .attr("transform", "translate(-6," + gridSize / 4 + ")") .attr("class","mono"); var title = svg.append("text") // Title = Input Distance .attr("class", "mono") .attr("x", -(gridSize * 7)) .attr("y", -26) .style("font-size", "12px") .attr("transform", "rotate(-90)") .attr("class","mono") .text("Input Distance"); var title = svg.append("text") // Title = Output Distance .attr("class", "mono") .attr("x", gridSize * 3 ) .attr("y", -26) .style("font-size", "12px") .text("Output Distance"); var dim2Labels = svg.selectAll(".dim2Label") // Label .data(dim_2) .enter().append("text") .text(function(d) { return d; }) .attr("x", function(d, i) { return i * gridSize * 3.2; }) .attr("y", 0) .style("text-anchor", "middle") .style("font-size", "10px") .attr("transform", "translate(" + gridSize / 4 + ", -6)") .attr("class","mono"); var heatMap = svg.selectAll(".dim2") // Combine the two dimensions and plot the shepard heatmap .data(data) .enter().append("rect") .attr("x", function(d) { return (d.dim2 - 1) * gridSize; }) .attr("y", function(d) { return (d.dim1 - 1) * gridSize; }) .attr("rx", 0.4) .attr("ry", 0.4) .attr("class", "dim2 bordered") .attr("width", gridSize-2) .attr("height", gridSize-2) .style("fill", colors[0]) .attr("class", "square") .on('mouseover', tip.show) .on('mouseout', tip.hide); heatMap.transition() .style("fill", function(d) { return colorScale(d.value); }); heatMap.append("title").text(function(d) { return d.value; }); var heatleg = d3.select("#legend3"); // Legend3 = the legend of the shepard heatmap heatleg.append("g") .attr("class", "legendLinear") .attr("transform", "translate(0,14)"); var legend = d3.legendColor() // Legend color and title! .labelFormat(d3.format(",.0f")) .cells(9) .title("Number of Points") .scale(colorScale); heatleg.select(".legendLinear") .call(legend); }); } // perform single t-SNE iteration function step() { step_counter++; if(step_counter <= max_counter) { cost = tsne.step(); cost_each = cost[1]; for(var i = 0; i < final_dataset.length; i++) final_dataset[i].cost = cost_each[i]; $("#cost").html("Number of Iteration: " + tsne.iter + ", Overall Cost: " + cost[0].toFixed(3)); } else { clearInterval(runner); } if (step_counter == max_counter){ updateEmbedding(AnalaysisResults); } } function resize(canvas) { // This is being used in the WebGL t-SNE for the overview canvas // Lookup the size the browser is displaying the canvas. var displayWidth = canvas.clientWidth; var displayHeight = canvas.clientHeight; // Check if the canvas is not the same size. if (canvas.width != displayWidth || canvas.height != displayHeight) { // Make the canvas the same size canvas.width = displayWidth; canvas.height = displayHeight; } } function OverviewtSNE(points){ // The overview t-SNE function var canvas = document.getElementById('tSNEcanvas'); // WebGL & canvas gl = canvas.getContext('experimental-webgl'); // If we don't have a GL context, give up now if (!gl) { alert('Unable to initialize WebGL. Your browser or machine may not support it.'); return; } ColorsCategorical = ['#a6cee3','#fb9a99','#b2df8a','#33a02c','#1f78b4','#e31a1c','#fdbf6f','#ff7f00','#cab2d6','#6a3d9a']; // Colors for the labels/categories if there are some! if (all_labels[0] == undefined){ var colorScale = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]); // If no category then grascale. } else{ var colorScale = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical); // We use the color scale here! } d3.select("#legend2").select("svg").remove(); // Create the legend2 which is for the overview panel. var svg = d3.select("#legend2").append("svg"); svg.append("g") .attr("class", "legendOrdinal") .attr("transform", "translate(8,5)"); var legendOrdinal = d3.legendColor() .shape("path", d3.legendSize(100)) .shapePadding(15) .scale(colorScale); svg.select(".legendOrdinal") .call(legendOrdinal); let vertices = []; let colors = []; for (var i=0; i1 to 0->2 let zeroToTwo = zeroToOne * 2.0; let zeroToTwo2 = zeroToOne2 * 2.0; // convert from 0->2 to -1->+1 (clipspace) let clipSpace = zeroToTwo - 1.0; let clipSpace2 = zeroToTwo2 - 1.0; singleObj = clipSpace; vertices.push(singleObj); singleObj = clipSpace2 * -1; vertices.push(singleObj); singleObj = 0.0; vertices.push(singleObj); } for (var i=0; i Arrayxy. } for (var k = 0; k < Arrayxy.length - 1 ; k++){ // Draw the line which connects two circles d3.select('#modtSNEcanvas_svg_Schema').append('line') .attr("x1", Arrayxy[k][0]) .attr("y1", Arrayxy[k][1]) .attr("x2", Arrayxy[k+1][0]) .attr("y2", Arrayxy[k+1][1]) .style("stroke","black") .style("stroke-width",1); } }); svgClick.on("contextmenu", function (d) { if (prevRightClick == true){ // Do not do anything because the right click should be prevented } else { var line = d3.line().curve(d3.curveCardinal); for (var k = 0; k < Arrayxy.length - 1; k++){ // Define a path and check the schema. path = svgClick.append("path") .datum(Arrayxy.slice(k, k+2)) .attr("class", "SchemaCheck") .attr("d", line); } // Prevent the default mouse action. Allow right click to be used for the confirmation of our schema. d3.event.preventDefault(); flagForSchema = true; // Schema is activated. CalculateCorrel(); // Calculate the correlations } }); } function CalculateCorrel(){ // Calculate the correlation is a function which has all the computations for the schema ordering (investigation). if (flagForSchema == false){ alert("Please, draw a schema first!"); // If no Schema is drawn then ask the user! } else{ var correlLimit = document.getElementById("param-corr-value").value; // Get the threshold value with which the user set's the boundaries of the schema investigation correlLimit = parseInt(correlLimit); allTransformPoints = []; for (var loop = 0; loop < points.length ; loop++){ allTransformPoints[loop] = [points[loop].x, points[loop].y, points[loop].id, points[loop].beta, points[loop].cost, points[loop].selected]; } var line = svgClick.append("line"); paths = svgClick.selectAll("path").filter(".SchemaCheck"); XYDistId = []; if (paths.nodes().length == 0){ // We need more than 1 points alert("Please, provide one more point in order to create a line (i.e., path)!") } else{ for (var m = 0; m < paths.nodes().length; m++) { for (var j = 0; j < allTransformPoints.length; j++){ p = closestPoint(paths.nodes()[m], allTransformPoints[j]); // Closest of each point to the paths that we have. XYDistId.push(p); // Take the XY coordinates, Distance, and ID } } for (var j = 0; j < allTransformPoints.length; j++){ for (var m = 0; m < paths.nodes().length; m++) { // Find the minimum path distance for each point if (m == 0){ minimum = XYDistId[j].distance; } else if (minimum > XYDistId[(m * allTransformPoints.length) + j].distance) { minimum = XYDistId[(m * allTransformPoints.length) + j].distance; } } for (var l = 0; l < paths.nodes().length ; l++) { if (XYDistId[(l * allTransformPoints.length) + j].distance == minimum){ allTransformPoints[j].bucketID = l; // Bucket ID in which each point belongs to... } } } var arrays = [], size = allTransformPoints.length; while (XYDistId.length > 0) { // For each path I have all the necessary information (all the IDs of the points etc..) arrays.push(XYDistId.splice(0, size)); } var arraysCleared = []; for (var j = 0; j < allTransformPoints.length; j++){ // Now we have the XY coordinates values of the points, the IDs of the points, the xy coordinates on the line, the number of the path that they belong two times. for (var m=0; m < arrays.length; m++) { if (allTransformPoints[j].bucketID == m){ arraysCleared.push(arrays[m][j].concat(allTransformPoints[j].bucketID, Arrayxy[m], arrays[m][j].distance, arrays[m][j].id)); } } } ArrayLimit = []; for (var i=0; i dist) return 1; return 0; }); } // This is how we gain the order. var arraysConnected = []; if (paths.nodes().length == 1) { arraysConnected = arraysSplitted[0]; } else { for (var m=0; m < paths.nodes().length - 1; m++) { arraysConnected = arraysSplitted[m].concat(arraysSplitted[m+1]); } } var Order = []; for (var temp = 0; temp < arraysConnected.length; temp++) { Order.push(arraysConnected[temp][6]); // We have the order now for the entire path. } for (var i = 0; i < points.length; i++){ points[i].selected = false; for (var j = 0; j < ArrayLimit.length; j++){ if (ArrayLimit[j][ArrayLimit[0].length-1] == points[i].id){ points[i].selected = true; points[i].schemaInv = true; } } } redraw(points); // Redraw the points and leave only the selected points with a color (else gray color) ArrayContainsDataFeaturesCleared = []; // Recalculate that because we want dimensions + 1 (the id) elements in columns. for (let k = 0; k < dataFeatures.length; k++){ object = []; for (let j = 0; j < Object.keys(dataFeatures[k]).length; j++){ if(typeof(Object.values(dataFeatures[k])[j]) == "number" && Object.keys(dataFeatures[k])[j] != Category){ // Only numbers and not the classification labels. object.push(Object.values(dataFeatures[k])[j]); } } ArrayContainsDataFeaturesCleared.push(object.concat(k)); // The ArrayContainsDataFeaturesCleared contains only numbers without the categorization parameter even if it is a number. } ArrayContainsDataFeaturesCleared = mapOrder(ArrayContainsDataFeaturesCleared, Order, ArrayContainsDataFeaturesCleared[0].length-1); // Order the features according to the order. ArrayContainsDataFeaturesLimit = []; for (var i = 0; i < ArrayContainsDataFeaturesCleared.length; i++){ for (var j = 0; j < arraysConnected.length; j++){ if (ArrayContainsDataFeaturesCleared[i][ArrayContainsDataFeaturesCleared[0].length-1] == arraysConnected[j][6]){ ArrayContainsDataFeaturesLimit.push(ArrayContainsDataFeaturesCleared[i]); // These are the selected points in an order from the higher id (the previous local id) to the lower. } } } if (ArrayContainsDataFeaturesLimit.length == 0){ // If no points were selected then send a message to the user! And set everything again to the initial state. d3.selectAll("#correlation > *").remove(); d3.selectAll("#modtSNEcanvas_svg > *").remove(); d3.selectAll("#modtSNEcanvas_svg_Schema > *").remove(); flagForSchema = false; Arrayx = []; Arrayy = []; XYDistId = []; Arrayxy = []; DistanceDrawing1D = []; allTransformPoints = []; pFinal = []; ArrayLimit = []; correlationResults = []; ArrayContainsDataFeaturesLimit = []; prevRightClick = false; for (var i=0; i < InitialStatePoints.length; i++){ InitialStatePoints[i].selected = true; InitialStatePoints[i].starplot = false; } redraw(InitialStatePoints); alert("No points selected! Please, try to increase the correlation threshold."); } else { for (var loop = 0; loop < ArrayContainsDataFeaturesLimit.length; loop++) { ArrayContainsDataFeaturesLimit[loop].push(loop); } var SignStore = []; correlationResults = []; const arrayColumn = (arr, n) => arr.map(x => x[n]); for (var temp = 0; temp < ArrayContainsDataFeaturesLimit[0].length - 2; temp++) { var tempData = new Array( arrayColumn(ArrayContainsDataFeaturesLimit, temp), arrayColumn(ArrayContainsDataFeaturesLimit, ArrayContainsDataFeaturesLimit[0].length - 1) ); if (isNaN(pearsonCorrelation(tempData, 0, 1))) { } else{ SignStore.push([temp, pearsonCorrelation(tempData, 0, 1)]); // Keep the sign correlationResults.push([Object.keys(dataFeatures[0])[temp] + " (" + temp + ")", Math.abs(pearsonCorrelation(tempData, 0, 1))]); // Find the pearson correlations } } correlationResults = correlationResults.sort( // Sort the correlations from the biggest to the lowest value (absolute values) function(a,b) { if (a[1] == b[1]) return a[0] < b[0] ? -1 : 1; return a[1] < b[1] ? 1 : -1; } ); for (var j = 0; j < correlationResults.length; j++) { for (var i = 0; i < SignStore.length; i++) { if (SignStore[i][1]*(-1) == correlationResults[j][1]) { correlationResults[j][1] = parseInt(correlationResults[j][1] * 100) * (-1); // Give the negative sign if needed and multiply by 100 correlationResults[j].push(j); } if (SignStore[i][1] == correlationResults[j][1]) { correlationResults[j][1] = parseInt(correlationResults[j][1] * 100); // Give a positive sign and multiply by 100 correlationResults[j].push(j); } } } } drawBarChart(); // Draw the horizontal barchart with the correlations. } } } function drawBarChart(){ // Draw the horizontal barchart with the correlations. // Remove any previous barchart. d3.selectAll("#correlation > *").remove(); ///////////////////////////////////////////////////////////// ///////////////// Set-up SVG and wrappers /////////////////// ///////////////////////////////////////////////////////////// var mainGroup = svg.append("g") .attr("class","mainGroupWrapper") .attr("transform","translate(" + main_margin.left + "," + main_margin.top + ")") .append("g") //another one for the clip path - due to not wanting to clip the labels .attr("clip-path", "url(#clip)") .style("clip-path", "url(#clip)") .attr("class","mainGroup") var miniGroup = svg.append("g") .attr("class","miniGroup") .attr("transform","translate(" + (main_margin.left + main_width + main_margin.right + mini_margin.left) + "," + mini_margin.top + ")"); var brushGroup = svg.append("g") .attr("class","brushGroup") .attr("transform","translate(" + (main_margin.left + main_width + main_margin.right + mini_margin.left) + "," + mini_margin.top + ")"); ///////////////////////////////////////////////////////////// ////////////////////// Initiate scales ////////////////////// ///////////////////////////////////////////////////////////// main_xScale = d3v3.scale.linear().range([0, main_width]); mini_xScale = d3v3.scale.linear().range([0, mini_width]); main_yScale = d3v3.scale.ordinal().rangeBands([0, main_height], 0.4, 0); mini_yScale = d3v3.scale.ordinal().rangeBands([0, mini_height], 0.4, 0); //Based on the idea from: http://stackoverflow.com/questions/21485339/d3-brushing-on-grouped-bar-chart main_yZoom = d3v3.scale.linear() .range([0, main_height]) .domain([0, main_height]); //Create x axis object main_xAxis = d3v3.svg.axis() .scale(main_xScale) .orient("bottom") .ticks(8) .outerTickSize(0); //Add group for the x axis d3v3.select(".mainGroupWrapper").append("g") .attr("class", "x axis") .attr("transform", "translate(" + 0 + "," + (main_height + 5) + ")"); //Create y axis object main_yAxis = d3v3.svg.axis() .scale(main_yScale) .orient("left") .tickSize(0) .outerTickSize(0); //Add group for the y axis mainGroup.append("g") .attr("class", "y axis") .attr("transform", "translate(-5,0)"); ///////////////////////////////////////////////////////////// /////////////////////// Update scales /////////////////////// ///////////////////////////////////////////////////////////// //Update the scales main_xScale.domain([-100, 100]); mini_xScale.domain([-100, 100]); main_yScale.domain(correlationResults.map(function(d) { return d[0]; })); mini_yScale.domain(correlationResults.map(function(d) { return d[0]; })); //Create the visual part of the y axis d3v3.select(".mainGroup").select(".y.axis").call(main_yAxis); d3v3.select(".mainGroupWrapper").select(".x.axis").call(main_xAxis); ///////////////////////////////////////////////////////////// ///////////////////// Label axis scales ///////////////////// ///////////////////////////////////////////////////////////// textScale = d3v3.scale.linear() .domain([15,50]) .range([12,6]) .clamp(true); ///////////////////////////////////////////////////////////// ///////////////////////// Create brush ////////////////////// ///////////////////////////////////////////////////////////// //What should the first extent of the brush become - a bit arbitrary this var brushExtent = parseInt(Math.max( 1, Math.min( 20, Math.round(correlationResults.length * 0.75) ) )); brush = d3v3.svg.brush() .y(mini_yScale) .extent([mini_yScale(correlationResults[0][0]), mini_yScale(correlationResults[brushExtent][0])]) .on("brush", brushmove) //Set up the visual part of the brush gBrush = d3v3.select(".brushGroup").append("g") .attr("class", "brush") .call(brush); gBrush.selectAll(".resize") .append("line") .attr("x2", mini_width); gBrush.selectAll(".resize") .append("path") .attr("d", d3v3.svg.symbol().type("triangle-up").size(20)) .attr("transform", function(d,i) { return i ? "translate(" + (mini_width/2) + "," + 4 + ") rotate(180)" : "translate(" + (mini_width/2) + "," + -4 + ") rotate(0)"; }); gBrush.selectAll("rect") .attr("width", mini_width); //On a click recenter the brush window gBrush.select(".background") .on("mousedown.brush", brushcenter) .on("touchstart.brush", brushcenter); /////////////////////////////////////////////////////////////////////////// /////////////////// Create a rainbow gradient - for fun /////////////////// /////////////////////////////////////////////////////////////////////////// defs = svg.append("defs") //Create two separate gradients for the main and mini bar - just because it looks fun createGradient("gradient-main", "60%"); createGradient("gradient-mini", "13%"); //Add the clip path for the main bar chart defs.append("clipPath") .attr("id", "clip") .append("rect") .attr("x", -main_margin.left) .attr("width", main_width + main_margin.left) .attr("height", main_height); ///////////////////////////////////////////////////////////// /////////////// Set-up the mini bar chart /////////////////// ///////////////////////////////////////////////////////////// //The mini brushable bar //DATA JOIN var mini_bar = d3v3.select(".miniGroup").selectAll(".bar") .data(correlationResults, function(d) { return +d[2]; }); //UDPATE mini_bar .attr("width", function(d) { return Math.abs(mini_xScale(d[1]) - mini_xScale(0)); }) .attr("y", function(d,i) { return mini_yScale(d[0]); }) .attr("height", mini_yScale.rangeBand()) //ENTER mini_bar.enter().append("rect") .attr("class", "bar") .attr("x", function (d) { return mini_xScale(Math.min(0, d[1])); }) .attr("width", function(d) { return Math.abs(mini_xScale(d[1]) - mini_xScale(0)); }) .attr("y", function(d,i) { return mini_yScale(d[0]); }) .attr("height", mini_yScale.rangeBand()) .style("fill", "url(#gradient-mini)"); //EXIT mini_bar.exit() .remove(); //Start the brush //gBrush.call(brush.event); gBrush.call(brush.event); prevRightClick = true; } //Function runs on a brush move - to update the big bar chart function updateBarChart() { ///////////////////////////////////////////////////////////// ////////// Update the bars of the main bar chart //////////// ///////////////////////////////////////////////////////////// var bar = d3v3.select(".mainGroup").selectAll(".bar") .data(correlationResults, function(d) { return +d[2]; }) //, function(d) { return d.key; }); bar .attr("x", function (d) { return main_xScale(Math.min(0, d[1])); }) .attr("width", function(d) { return Math.abs(main_xScale(d[1]) - main_xScale(0)); }) .attr("y", function(d,i) { return main_yScale(d[0]); }) .attr("height", main_yScale.rangeBand()); //ENTER bar.enter().append("rect") .attr("class", "bar") .style("fill", "url(#gradient-main)") .attr("x", function (d) { return main_xScale(Math.min(0, d[1])); }) .attr("width", function(d) { return Math.abs(main_xScale(d[1]) - main_xScale(0)); }) .attr("y", function(d,i) { return main_yScale(d[0]); }) .attr("height", main_yScale.rangeBand()) .on("mouseover", () => { svg.select('.tooltip').style('display', 'none'); }) .on("mouseout", function(d){ points.forEach(function (p) { p.DimON = null }) BetatSNE(points); svg.select('.tooltip').style('display', 'none'); }) .on("mousemove", function(d) { points.forEach(function (p) { if (p.schemaInv == true) { p.DimON = d[0]; } }) BetatSNE(points); }); //EXIT bar.exit() .remove(); }//update ///////////////////////////////////////////////////////////// ////////////////////// Brush functions ////////////////////// ///////////////////////////////////////////////////////////// //First function that runs on a brush move function brushmove() { var extent = brush.extent(); //Reset the part that is visible on the big chart var originalRange = main_yZoom.range(); main_yZoom.domain( extent ); //Update the domain of the x & y scale of the big bar chart main_yScale.domain(correlationResults.map(function(d) { return d[0]; })); main_yScale.rangeBands( [ main_yZoom(originalRange[0]), main_yZoom(originalRange[1]) ], 0.4, 0); //Update the y axis of the big chart d3v3.select(".mainGroup") .select(".y.axis") .call(main_yAxis); //Which bars are still "selected" var selected = mini_yScale.domain() .filter(function(d) { return (extent[0] - mini_yScale.rangeBand () + 1e-2 <= mini_yScale(d)) && (mini_yScale(d) <= extent[1] - 1e-2); }); //Update the colors of the mini chart - Make everything outside the brush grey d3.select(".miniGroup").selectAll(".bar") .style("fill", function(d, i) { return selected.indexOf(d[0]) > -1 ? "url(#gradient-mini)" : "#e0e0e0"; }); //Update the label size d3v3.selectAll(".y.axis text") .style("font-size", textScale(selected.length)); //Update the big bar chart updateBarChart(); }//brushmove ///////////////////////////////////////////////////////////// ////////////////////// Click functions ////////////////////// ///////////////////////////////////////////////////////////// //Based on http://bl.ocks.org/mbostock/6498000 //What to do when the user clicks on another location along the brushable bar chart function brushcenter() { var target = d3v3.event.target, extent = brush.extent(), size = extent[1] - extent[0], range = mini_yScale.range(), y0 = d3v3.min(range) + size / 2, y1 = d3.max(range) + mini_yScale.rangeBand() - size / 2, center = Math.max( y0, Math.min( y1, d3.mouse(target)[1] ) ); d3v3.event.stopPropagation(); gBrush .call(brush.extent([center - size / 2, center + size / 2])) .call(brush.event); }//brushcenter function scroll() { //Mouse scroll on the mini chart var extent = brush.extent(), size = extent[1] - extent[0], range = mini_yScale.range(), y0 = d3v3.min(range), y1 = d3v3.max(range) + mini_yScale.rangeBand(), dy = d3v3.event.deltaY, topSection; if ( extent[0] - dy < y0 ) { topSection = y0; } else if ( extent[1] - dy > y1 ) { topSection = y1 - size; } else { topSection = extent[0] - dy; } //Make sure the page doesn't scroll as well d3v3.event.stopPropagation(); d3v3.event.preventDefault(); gBrush .call(brush.extent([ topSection, topSection + size ])) .call(brush.event); }//scroll ///////////////////////////////////////////////////////////// ///////////////////// Helper functions ////////////////////// ///////////////////////////////////////////////////////////// //Create a gradient function createGradient(idName, endPerc) { var colorsBarChart = ['#919191']; colorsBarChart.reverse(); defs.append("linearGradient") .attr("id", idName) .attr("gradientUnits", "userSpaceOnUse") .attr("x1", "0%").attr("y1", "0%") .attr("x2", endPerc).attr("y2", "0%") .selectAll("stop") .data(colorsBarChart) .enter().append("stop") .attr("offset", function(d,i) { return i/(colorsBarChart.length-1); }) .attr("stop-color", function(d) { return d; }); }//createGradient function mapOrder(array, order, key) { // Order an array according to a key. array.sort( function (a, b) { var A = a[key], B = b[key]; if (order.indexOf(A) > order.indexOf(B)) { return 1; } else { return -1; } }); return array; }; /** * Calculate the person correlation score between two items in a dataset. * * @param {object} prefs The dataset containing data about both items that * are being compared. * @param {string} p1 Item one for comparison. * @param {string} p2 Item two for comparison. * @return {float} The pearson correlation score. */ function pearsonCorrelation(prefs, p1, p2) { var si = []; for (var key in prefs[p1]) { if (prefs[p2][key]) si.push(key); } var n = si.length; if (n == 0) return 0; var sum1 = 0; for (var i = 0; i < si.length; i++) sum1 += prefs[p1][si[i]]; var sum2 = 0; for (var i = 0; i < si.length; i++) sum2 += prefs[p2][si[i]]; var sum1Sq = 0; for (var i = 0; i < si.length; i++) { sum1Sq += Math.pow(prefs[p1][si[i]], 2); } var sum2Sq = 0; for (var i = 0; i < si.length; i++) { sum2Sq += Math.pow(prefs[p2][si[i]], 2); } var pSum = 0; for (var i = 0; i < si.length; i++) { pSum += prefs[p1][si[i]] * prefs[p2][si[i]]; } var num = pSum - (sum1 * sum2 / n); var den = Math.sqrt((sum1Sq - Math.pow(sum1, 2) / n) * (sum2Sq - Math.pow(sum2, 2) / n)); if (den == 0) return 0; return num / den; } function closestPoint(pathNode, point) { var pathLength = pathNode.getTotalLength(), precision = 8, best, bestLength, bestDistance = Infinity; // linear scan for coarse approximation for (var scan, scanLength = 0, scanDistance; scanLength <= pathLength; scanLength += precision) { if ((scanDistance = distance2(scan = pathNode.getPointAtLength(scanLength))) < bestDistance) { best = scan, bestLength = scanLength, bestDistance = scanDistance; } } // binary search for precise estimate precision /= 2; while (precision > 0.5) { var before, after, beforeLength, afterLength, beforeDistance, afterDistance; if ((beforeLength = bestLength - precision) >= 0 && (beforeDistance = distance2(before = pathNode.getPointAtLength(beforeLength))) < bestDistance) { best = before, bestLength = beforeLength, bestDistance = beforeDistance; } else if ((afterLength = bestLength + precision) <= pathLength && (afterDistance = distance2(after = pathNode.getPointAtLength(afterLength))) < bestDistance) { best = after, bestLength = afterLength, bestDistance = afterDistance; } else { precision /= 2; } } best = [best.x, best.y]; best.distance = Math.sqrt(bestDistance); best.id = point[2]; return best; function distance2(p) { var dx = p.x - point[0], dy = p.y - point[1]; return dx * dx + dy * dy; } } function abbreviateNumber(value) { // Abbreviate the numbers for the main visualization legend! var newValue = value; if (value >= 1000) { var suffixes = ["", "k", "m", "b","t"]; var suffixNum = Math.floor( (""+value).length/3 ); var shortValue = ''; for (var precision = 2; precision >= 1; precision--) { shortValue = parseFloat( (suffixNum != 0 ? (value / Math.pow(1000,suffixNum) ) : value).toPrecision(precision)); var dotLessShortValue = (shortValue + '').replace(/[^a-zA-Z 0-9]+/g,''); if (dotLessShortValue.length <= 2) { break; } } if (shortValue % 1 != 0) shortNum = shortValue.toFixed(1); newValue = shortValue+suffixes[suffixNum]; } return newValue; } function clearThree(obj){ // Clear three.js object! while(obj.children.length > 0){ clearThree(obj.children[0]) obj.remove(obj.children[0]); } if(obj.geometry) obj.geometry.dispose() if(obj.material) obj.material.dispose() if(obj.texture) obj.texture.dispose() } var viewport3 = getViewport(); // Get the width and height of the main visualization var vw3 = viewport3[0] * 0.2; var margin = {top: 40, right: 100, bottom: 40, left: 190}, // Set the margins for the starplot width = Math.min(vw3, window.innerWidth - 10) - margin.left - margin.right, height = Math.min(width, window.innerHeight - margin.top - margin.bottom); var wrapData = []; var radarChartOptions = { // starplot options w: width, h: height, margin: margin, maxValue: 100, roundStrokes: true }; var colors; var IDS = []; ////////////////////////////////////////////////////////////// //////////////////// Draw the Chart ////////////////////////// ////////////////////////////////////////////////////////////// //Call function to draw the Radar chart (starplot) RadarChart("#starPlot", wrapData, colors, IDS, radarChartOptions); function BetatSNE(points){ // Run the main visualization if (points.length) { // If points exist (at least 1 point) selectedPoints = []; var findNearestTable = []; for (let m=0; m1; k--){ // Start from the maximum k value and go to the minimum (k=2). findNearest = 0; var indexOrderSliced = []; var indexOrderSliced2d = []; var count1 = new Array(selectedPoints.length).fill(0); var count2 = new Array(selectedPoints.length).fill(0); counter1 = 0; counter2 = 0; for (var i=0; i -1) { indices[i].splice(index, 1); } // Sorting the mapped array containing the reduced values indices[i].sort(function(a, b) { if (a[1] > b[1]) { return 1; } if (a[1] < b[1]) { return -1; } return 0; }); indexOrder[i] = indices[i].map(function(value) { return value[0]; }); // Temporary array holds objects with position and sort-value indices2d[i] = dists2d[i].map(function(el, i) { return [ i, el ]; }) var index2d = indices2d[i].indexOf(selectedPoints[i].id); if (index2d > -1) { indices2d[i].splice(index2d, 1); } // Sorting the mapped array containing the reduced values indices2d[i].sort(function(a, b) { if (a[1] > b[1]) { return 1; } if (a[1] < b[1]) { return -1; } return 0; }); indexOrder2d[i] = indices2d[i].map(function(value) { return value[0]; }); } indexOrderSliced[i] = indexOrder[i].slice(0,k); indexOrderSliced2d[i] = indexOrder2d[i].slice(0,k); for (var m=0; m < indexOrderSliced2d[i].length; m++){ if (indexOrderSliced[i].includes(indexOrderSliced2d[i][m])){ // Union count1[i] = count1[i] + 1; temp[i] = temp[i] + 1; } if(indexOrderSliced[i][m] == indexOrderSliced2d[i][m]){ // Intersection count2[i] = count2[i] + 1; temp2[i] = temp2[i] + 1; } } if (count1[i] != 0){ counter1 = (count1[i] / temp[i]) + counter1; } if (count2[i] != 0){ counter2 = (count2[i] / temp2[i]) + counter2; } } sumUnion = counter1 / selectedPoints.length; // Union sumIntersection = counter2 / selectedPoints.length; // Intersection if (sumUnion == 0){ findNearest = 0; // Prevent the division by 0 value. } else{ findNearest = sumIntersection / sumUnion; // Nearest neighbor! } if (isNaN(findNearest)){ findNearest = 0; // If kNN is fully uncorrelated then we say that the value is 0. } findNearestTable.push(findNearest * vh * 2); // These values are multiplied by the height of the viewport because we need to draw the bins of the barchart representation } findNearestTable.reverse(); var barPadding = 5; // Leave some space between the bars d3v3.select("#knnBarChart").selectAll("rect").remove(); var svg2 = d3v3.select('#knnBarChart') // Create the barchart for the kNN .attr("class", "bar-chart"); var barWidth = (vw / findNearestTable.length); // Bar width. var knnBarChartSVG = svg2.selectAll("rect") // Draw the barchart! .data(findNearestTable) .enter() .append("rect") .attr("y", function(d) { return Math.round(vh*2 - d) }) .attr("height", function(d) { return d; }) .attr("width", barWidth - barPadding) .attr("transform", function (d, i) { var translate = [barWidth * i, 0]; return "translate("+ translate +")"; }); } // Here we have the code for the starplot d3.select("#starPlot").selectAll('g').remove(); // Remove the starplot if there was one before var coun = 0; for (var i=0; i < selectedPoints.length; i++){ if (selectedPoints[i].starplot == true){ // Count the selected points coun = coun + 1; } } if(selectedPoints.length <= 10 && coun > 0){ // If points > 10 then do not draw! If points = 0 then do not draw! var FeatureWise = []; for (var j=0; j FeatureWiseSliced[i]){ min[j] = FeatureWiseSliced[i]; } } } var vectors = PCA.getEigenVectors(ArrayContainsDataFeaturesCleared); // Run a local PCA! var PCAResults = PCA.computeAdjustedData(ArrayContainsDataFeaturesCleared,vectors[0]); // Get the results for individual dimension. var PCASelVec = []; PCASelVec = PCAResults.selectedVectors[0]; var len = PCASelVec.length; var indices = new Array(len); for (var i = 0; i < len; ++i) indices[i] = i; indices = indices.sort(function (a, b) { return PCASelVec[a] < PCASelVec[b] ? -1 : PCASelVec[a] > PCASelVec[b] ? 1 : 0; }); // Get the most important features first! Clockwise ordering var wrapData = []; var IDS = []; for (var i=0; i { dimensions = window.innerWidth; dimensions = window.innerHeight; renderer.setSize(dimensions, dimensions); camera.aspect = dimensions / dimensions; camera.updateProjectionMatrix(); }) let zoom = d3.zoom() .scaleExtent([getScaleFromZ(far), getScaleFromZ(near)]) .on('zoom', () => { let d3_transform = d3.event.transform; zoomHandler(d3_transform); }); view = d3.select(renderer.domElement); function setUpZoom() { view.call(zoom); let initial_scale = getScaleFromZ(far); var initial_transform = d3.zoomIdentity.translate(dimensions/2, dimensions/2).scale(initial_scale); zoom.transform(view, initial_transform); camera.position.set(0, 0, far); } setUpZoom(); var circle_sprite= new THREE.TextureLoader().load( // Add the circle effect "./textures/circle-sprite.png" ) clearThree(scene); // Clear previous scenes // Increase/reduce size factor selected by the user var limitdist = document.getElementById("param-lim-value").value; limitdist = parseFloat(limitdist).toFixed(1); let pointsMaterial; let factorPlusSize; let geometry = new THREE.Geometry(); for (var i=0; i { let [mouseX, mouseY] = d3.mouse(view.node()); let mouse_position = [mouseX, mouseY]; checkIntersects(mouse_position); }); function mouseToThree(mouseX, mouseY) { return new THREE.Vector3( mouseX / dimensions * 2 - 1, -(mouseY / dimensions) * 2 + 1, 1 ); } function checkIntersects(mouse_position) { let mouse_vector = mouseToThree(...mouse_position); raycaster.setFromCamera(mouse_vector, camera); let intersects = raycaster.intersectObject(particlesDuplic); if (intersects[0]) { if (ColSizeSelector == "color"){ points = points.sort(function(a, b) { return a.beta - b.beta; }) } else{ points = points.sort(function(a, b) { return a.cost - b.cost; }) } let sorted_intersects = sortIntersectsByDistanceToRay(intersects); let intersect = sorted_intersects[0]; let index = intersect.index; let datum = points[index]; highlightPoint(datum); showTooltip(mouse_position, datum); } else { removeHighlights(); hideTooltip(); } } function sortIntersectsByDistanceToRay(intersects) { return _.sortBy(intersects, "distanceToRay"); } hoverContainer = new THREE.Object3D() scene.add(hoverContainer); function highlightPoint(datum) { removeHighlights(); let geometry = new THREE.Geometry(); geometry.vertices.push( new THREE.Vector3( (((datum.x/dimensions)*2) - 1)*dimensions, (((datum.y/dimensions)*2) - 1)*dimensions*-1, 0 ) ); if (all_labels[0] == undefined){ var colorScaleCat = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]); } else{ var colorScaleCat = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical); } geometry.colors = [ new THREE.Color(colorScaleCat(datum[Category])) ]; let material = new THREE.PointsMaterial({ size: 26, sizeAttenuation: false, vertexColors: THREE.VertexColors, map: circle_sprite, transparent: true }); let point = new THREE.Points(geometry, material); hoverContainer.add(point); } function removeHighlights() { hoverContainer.remove(...hoverContainer.children); } view.on("mouseleave", () => { removeHighlights() }); // Initial tooltip state let tooltip_state = { display: "none" } let tooltip_dimensions; let tooltip_template = document.createRange().createContextualFragment(``); document.body.append(tooltip_template); let $tooltip = document.querySelector('#tooltip'); let $point_tip = document.querySelector('#point_tip'); let $group_tip = document.querySelector('#group_tip'); function updateTooltip() { if (all_labels[0] == undefined){ var colorScaleCat = d3.scaleOrdinal().domain(["No Category"]).range(["#C0C0C0"]); } else{ var colorScaleCat = d3.scaleOrdinal().domain(all_labels).range(ColorsCategorical); } $tooltip.style.display = tooltip_state.display; $tooltip.style.left = tooltip_state.left + 'px'; $tooltip.style.top = tooltip_state.top + 'px'; $point_tip.innerText = tooltip_state[Category]; $point_tip.style.background = colorScaleCat(tooltip_state.color); var tooltipComb = []; tooltipComb = "Data set's features: " + "\n"; if (tooltip_dimensions){ for (var i=0; i