from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import copy import warnings import re import random import math import pandas as pd import numpy as np import multiprocessing from joblib import Parallel, delayed, Memory from sklearn.pipeline import make_pipeline from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV from sklearn import model_selection from sklearn.model_selection import cross_val_predict from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from imblearn.metrics import geometric_mean_score from sklearn.metrics import classification_report, accuracy_score, make_scorer, confusion_matrix from sklearn.manifold import MDS from sklearn.manifold import TSNE import umap # this block of code is for the connection between the server, the database, and the client (plus routing) # access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def reset(): global PerClassResultsClass0 PerClassResultsClass0 = [] global PerClassResultsClass1 PerClassResultsClass1 = [] global Results Results = [] global ResultsCM ResultsCM = [] global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global KNNModelsCount global LRModelsCount global MLPModelsCount global RFModelsCount global GradBModelsCount global factors factors = [1,1,1,1,0,0,0,0] global crossValidation crossValidation = 5 global randomSearchVar randomSearchVar = 100 global keyData keyData = 0 KNNModelsCount = 0 LRModelsCount = KNNModelsCount+randomSearchVar MLPModelsCount = LRModelsCount+randomSearchVar RFModelsCount = MLPModelsCount+randomSearchVar GradBModelsCount = RFModelsCount+randomSearchVar global XData XData = [] global yData yData = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar global countAllModels countAllModels = 0 global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_macro': 'precision_macro', 'recall_macro': 'recall_macro', 'f1_macro': 'f1_macro', 'roc_auc_ovo': 'roc_auc_ovo'} global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] global names_labels names_labels = [] global keySend keySend=0 return 'The reset was done!' # retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def retrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') data = json.loads(fileName) global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global factors factors = data['Factors'] global crossValidation crossValidation = int(data['CrossValidation']) global randomSearchVar randomSearchVar = int(data['RandomSearch']) global XData XData = [] global previousState previousState = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_macro': 'precision_macro', 'recall_macro': 'recall_macro', 'f1_macro': 'f1_macro', 'roc_auc_ovo': 'roc_auc_ovo'} # models global KNNModels global MLPModels global LRModels global RFModels global GradBModels KNNModels = [] MLPModels = [] LRModels = [] RFModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] global names_labels names_labels = [] global keySend keySend=0 DataRawLength = -1 DataRawLengthTest = -1 if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() names_labels.append('Healthy') names_labels.append('Diseased') elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.DiabetesC.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) dataSetSelection() return 'Everything is okay' # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def sendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' def dataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] return 'Everything Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def retrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] global XData global yData global countAllModels # loop through the algorithms global allParametersPerformancePerModel global HistoryPreservation for eachAlgor in algorithms: print(eachAlgor) if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'MLP': start = 60 stop = 120 step = 1 random.seed(RANDOM_SEED) ranges = [(n, random.randint(1,3)) for n in range(start, stop, step)] clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': ranges,'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(20, 100)), 'criterion': ['gini', 'entropy']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(20, 100)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels countAllModels = countAllModels + randomSearchVar allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd) HistoryPreservation = allParametersPerformancePerModel.copy() # call the function that sends the results to the frontend return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) @memory.cache def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): search = RandomizedSearchCV( estimator=clf, param_distributions=params, n_iter=100, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_macro','mean_test_recall_macro','mean_test_f1_macro','mean_test_roc_auc_ovo']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='macro')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_macro',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDs(): dicKNN = allParametersPerformancePerModel[0] dicLR = allParametersPerformancePerModel[4] dicMLP = allParametersPerformancePerModel[8] dicRF = allParametersPerformancePerModel[12] dicGradB = allParametersPerformancePerModel[16] df_concatIDs = dicKNN + dicLR + dicMLP + dicRF + dicGradB return df_concatIDs def PreprocessingMetrics(): dicKNN = allParametersPerformancePerModel[2] dicLR = allParametersPerformancePerModel[6] dicMLP = allParametersPerformancePerModel[10] dicRF = allParametersPerformancePerModel[14] dicGradB = allParametersPerformancePerModel[18] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPred(): dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs.reset_index(drop=True, inplace=True) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def EnsembleIDs(): global EnsembleActive global numberIDKNNGlob global numberIDLRGlob global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob numberIDKNNGlob = [] numberIDLRGlob = [] numberIDMLPGlob = [] numberIDRFGlob = [] numberIDGradBGlob = [] for el in EnsembleActive: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNNGlob.append(int(items[1])) elif (items[0] == 'LR'): numberIDLRGlob.append(int(items[1])) elif (items[0] == 'MLP'): numberIDMLPGlob.append(int(items[1])) elif (items[0] == 'RF'): numberIDRFGlob.append(int(items[1])) else: numberIDGradBGlob.append(int(items[1])) EnsembleIdsAll = numberIDKNNGlob + numberIDLRGlob + numberIDMLPGlob + numberIDRFGlob + numberIDGradBGlob return EnsembleIdsAll def PreprocessingPredEnsemble(): global EnsembleActive numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in EnsembleActive: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1])) elif (items[0] == 'LR'): numberIDLR.append(int(items[1])) elif (items[0] == 'MLP'): numberIDMLP.append(int(items[1])) elif (items[0] == 'RF'): numberIDRF.append(int(items[1])) else: numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingParam(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSep(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T return [dfKNN, dfLR, dfMLP, dfRF, dfGradB] # remove that maybe! def preProcsumPerMetric(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) is 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSel(): loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data) tsne.shape return tsne def FunUMAP (data): trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data) Xpos = trans.embedding_[:, 0].tolist() Ypos = trans.embedding_[:, 1].tolist() return [Xpos,Ypos] # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotClassifiers', methods=["GET", "POST"]) def SendToPlot(): while (len(DataResultsRaw) != DataRawLength): pass InitializeEnsemble() response = { 'OverviewResults': Results } return jsonify(response) def InitializeEnsemble(): XModels = PreprocessingMetrics() global ModelSpaceMDS global ModelSpaceTSNE global allParametersPerformancePerModel global EnsembleActive global keySend XModels = XModels.fillna(0) ModelSpaceMDS = FunMDS(XModels) ModelSpaceTSNE = FunTsne(XModels) ModelSpaceTSNE = ModelSpaceTSNE.tolist() ModelSpaceUMAP = FunUMAP(XModels) if (len(EnsembleActive) == 0): PredictionProbSel = PreprocessingPred() else: PredictionProbSel = PreprocessingPredEnsemble() ModelsIds = EnsembleIDs() EnsembleModel(ModelsIds, keySend) keySend=1 returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel) def EnsembleModel (Models, keyRetrieved): global XDataTest, yDataTest global scores global previousState global crossValidation global keyData scores = [] global all_classifiersSelection all_classifiersSelection = [] global all_classifiers global XData global yData global sclf global randomSearchVar greater = randomSearchVar*5 global numberIDKNNGlob global numberIDLRGlob global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob all_classifiers = [] columnsInit = [] columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData] temp = allParametersPerformancePerModel[1] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamKNN = pd.DataFrame.from_dict(tempDic) dfParamKNNFilt = dfParamKNN.iloc[:,0] for eachelem in numberIDKNNGlob: if (eachelem >= greater): arg = dfParamKNNFilt[eachelem-addKNN] else: arg = dfParamKNNFilt[eachelem-KNNModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg))) temp = allParametersPerformancePerModel[5] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamLR = pd.DataFrame.from_dict(tempDic) dfParamLRFilt = dfParamLR.iloc[:,0] for eachelem in numberIDLRGlob: if (eachelem >= greater): arg = dfParamLRFilt[eachelem-addLR] else: arg = dfParamLRFilt[eachelem-LRModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[9] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamMLP = pd.DataFrame.from_dict(tempDic) dfParamMLPFilt = dfParamMLP.iloc[:,0] for eachelem in numberIDMLPGlob: if (eachelem >= greater): arg = dfParamMLPFilt[eachelem-addMLP] else: arg = dfParamMLPFilt[eachelem-MLPModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[13] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamRF = pd.DataFrame.from_dict(tempDic) dfParamRFFilt = dfParamRF.iloc[:,0] for eachelem in numberIDRFGlob: if (eachelem >= greater): arg = dfParamRFFilt[eachelem-addRF] else: arg = dfParamRFFilt[eachelem-RFModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[17] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamGradB = pd.DataFrame.from_dict(tempDic) dfParamGradBFilt = dfParamGradB.iloc[:,0] for eachelem in numberIDGradBGlob: if (eachelem >= greater): arg = dfParamGradBFilt[eachelem-addGradB] else: arg = dfParamGradBFilt[eachelem-GradBModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg))) global sclf sclf = 0 sclf = EnsembleVoteClassifier(clfs=all_classifiers, voting='soft') global PerClassResultsClass0 PerClassResultsClass0 = [] global PerClassResultsClass1 PerClassResultsClass1 = [] nested_score = model_selection.cross_val_score(sclf, X=XData, y=yData, cv=crossValidation, scoring=make_scorer(classification_report_with_accuracy_score)) PerClassResultsClass0Con = pd.concat(PerClassResultsClass0, axis=1, sort=False) PerClassResultsClass1Con = pd.concat(PerClassResultsClass1, axis=1, sort=False) averageClass0 = PerClassResultsClass0Con.mean(axis=1) averageClass1 = PerClassResultsClass1Con.mean(axis=1) y_pred = cross_val_predict(sclf, XData, yData, cv=crossValidation) conf_mat = confusion_matrix(yData, y_pred) cm = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis] cm.diagonal() if (keyRetrieved == 0): scores.append(cm[0][0]) scores.append(cm[1][1]) scores.append(cm[0][0]) scores.append(cm[1][1]) scores.append(averageClass0.precision) scores.append(averageClass1.precision) scores.append(averageClass0.precision) scores.append(averageClass1.precision) scores.append(averageClass0.recall) scores.append(averageClass1.recall) scores.append(averageClass0.recall) scores.append(averageClass1.recall) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) previousState.append(scores[0]) previousState.append(scores[1]) previousState.append(scores[4]) previousState.append(scores[5]) previousState.append(scores[8]) previousState.append(scores[9]) previousState.append(scores[12]) previousState.append(scores[13]) else: scores.append(cm[0][0]) scores.append(cm[1][1]) if (cm[0][0] > previousState[0]): scores.append(cm[0][0]) previousState[0] = cm[0][0] else: scores.append(previousState[0]) if (cm[1][1] > previousState[1]): scores.append(cm[1][1]) previousState[1] = cm[1][1] else: scores.append(previousState[1]) scores.append(averageClass0.precision) scores.append(averageClass1.precision) if (averageClass0.precision > previousState[2]): scores.append(averageClass0.precision) previousState[2] = averageClass0.precision else: scores.append(previousState[2]) if (averageClass1.precision > previousState[3]): scores.append(averageClass1.precision) previousState[3] = averageClass1.precision else: scores.append(previousState[3]) scores.append(averageClass0.recall) scores.append(averageClass1.recall) if (averageClass0.recall > previousState[4]): scores.append(averageClass0.recall) previousState[4] = averageClass0.recall else: scores.append(previousState[4]) if (averageClass1.recall > previousState[5]): scores.append(averageClass1.recall) previousState[5] = averageClass1.recall else: scores.append(previousState[5]) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) if (averageClass0['f1-score'] > previousState[6]): scores.append(averageClass0['f1-score']) previousState[6] = averageClass0['f1-score'] else: scores.append(previousState[6]) if (averageClass1['f1-score'] > previousState[7]): scores.append(averageClass1['f1-score']) previousState[7] = averageClass1['f1-score'] else: scores.append(previousState[7]) return 'Okay' # Sending the final results to be visualized as a line plot @app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"]) def SendToPlotFinalResults(): global scores response = { 'FinalResults': scores } return jsonify(response) def classification_report_with_accuracy_score(y_true, y_pred): global PerClassResultsClass0 global PerClassResultsClass1 PerClassResultsLocal = pd.DataFrame.from_dict(classification_report(y_true, y_pred, output_dict=True)) Filter_PerClassResultsLocal0 = PerClassResultsLocal['0'] Filter_PerClassResultsLocal0 = Filter_PerClassResultsLocal0[:-1] Filter_PerClassResultsLocal1 = PerClassResultsLocal['1'] Filter_PerClassResultsLocal1 = Filter_PerClassResultsLocal1[:-1] PerClassResultsClass0.append(Filter_PerClassResultsLocal0) PerClassResultsClass1.append(Filter_PerClassResultsLocal1) return accuracy_score(y_true, y_pred) # return accuracy score def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel): global Results global AllTargets global names_labels Results = [] parametersGen = PreprocessingParam() metricsPerModel = preProcMetricsAllAndSel() sumPerClassifier = preProcsumPerMetric(factors) ModelsIDs = PreprocessingIDs() parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() Results.append(json.dumps(ModelsIDs)) Results.append(json.dumps(sumPerClassifier)) Results.append(json.dumps(parametersGenPD)) Results.append(json.dumps(metricsPerModel)) Results.append(json.dumps(XDataJSONEntireSet)) Results.append(json.dumps(XDataColumns)) Results.append(json.dumps(yData)) Results.append(json.dumps(target_names)) Results.append(json.dumps(AllTargets)) Results.append(json.dumps(ModelSpaceMDS)) Results.append(json.dumps(ModelSpaceTSNE)) Results.append(json.dumps(ModelSpaceUMAP)) Results.append(json.dumps(PredictionProbSel)) Results.append(json.dumps(names_labels)) return Results # Initialize crossover and mutation processes @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/CrossoverMutation', methods=["GET", "POST"]) def CrossoverMutateFun(): # get the models from the frontend RemainingIds = request.get_data().decode('utf8').replace("'", '"') RemainingIds = json.loads(RemainingIds) RemainingIds = RemainingIds['RemainingPoints'] global EnsembleActive EnsembleActive = request.get_data().decode('utf8').replace("'", '"') EnsembleActive = json.loads(EnsembleActive) EnsembleActive = EnsembleActive['StoreEnsemble'] setMaxLoopValue = request.get_data().decode('utf8').replace("'", '"') setMaxLoopValue = json.loads(setMaxLoopValue) setMaxLoopValue = setMaxLoopValue['loopNumber'] InitializeFirstStageCM(RemainingIds, setMaxLoopValue) return 'Okay' def InitializeFirstStageCM (RemainingIds, setMaxLoopValue): random.seed(RANDOM_SEED) global XData global yData global addKNN global addLR global addMLP global addRF global addGradB global countAllModels # loop through the algorithms global allParametersPerfCrossMutr global HistoryPreservation global randomSearchVar greater = randomSearchVar*5 KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds)) LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds)) MLPIDs = list(filter(lambda k: 'MLP' in k, RemainingIds)) RFIDs = list(filter(lambda k: 'RF' in k, RemainingIds)) GradBIDs = list(filter(lambda k: 'GradB' in k, RemainingIds)) countKNN = 0 countLR = 0 countMLP = 0 countRF = 0 countGradB = 0 paramAllAlgs = PreprocessingParam() KNNIntIndex = [] LRIntIndex = [] MLPIntIndex = [] RFIntIndex = [] GradBIntIndex = [] localCrossMutr = [] allParametersPerfCrossMutrKNNC = [] while countKNN < setMaxLoopValue[16]: for dr in KNNIDs: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN_C', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[16] for loop in range(setMaxLoopValue[16] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNC.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNC countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNM = [] while countKNN < setMaxLoopValue[10]: for dr in KNNIDs: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_neighbors'): randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN_M', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[10] for loop in range(setMaxLoopValue[10] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNM.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNM localCrossMutr.clear() allParametersPerfCrossMutrLRC = [] while countLR < setMaxLoopValue[15]: for dr in LRIDs: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) LRPickPair = random.sample(LRIntIndex,2) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR_C', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[15] for loop in range(setMaxLoopValue[15] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRC.append(localCrossMutr[0]) allParametersPerfCrossMutrLRC.append(localCrossMutr[1]) allParametersPerfCrossMutrLRC.append(localCrossMutr[2]) allParametersPerfCrossMutrLRC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRC countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRM = [] while countLR < setMaxLoopValue[9]: for dr in LRIDs: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'C'): randomNumber = random.randint(101, 1000) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR_M', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[9] for loop in range(setMaxLoopValue[9] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRM.append(localCrossMutr[0]) allParametersPerfCrossMutrLRM.append(localCrossMutr[1]) allParametersPerfCrossMutrLRM.append(localCrossMutr[2]) allParametersPerfCrossMutrLRM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM localCrossMutr.clear() allParametersPerfCrossMutrMLPC = [] while countMLP < setMaxLoopValue[14]: for dr in MLPIDs: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) MLPPickPair = random.sample(MLPIntIndex,2) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLP_C', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[14] for loop in range(setMaxLoopValue[14] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPC.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPC countMLP = 0 MLPIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrMLPM = [] while countMLP < setMaxLoopValue[8]: for dr in MLPIDs: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) MLPPickPair = random.sample(MLPIntIndex,1) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'hidden_layer_sizes'): randomNumber = (random.randint(10,60), random.randint(4,10)) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLP_M', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[8] for loop in range(setMaxLoopValue[8] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPM.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPM localCrossMutr.clear() allParametersPerfCrossMutrRFC = [] while countRF < setMaxLoopValue[13]: for dr in RFIDs: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) RFPickPair = random.sample(RFIntIndex,2) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF_C', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[13] for loop in range(setMaxLoopValue[13] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFC.append(localCrossMutr[0]) allParametersPerfCrossMutrRFC.append(localCrossMutr[1]) allParametersPerfCrossMutrRFC.append(localCrossMutr[2]) allParametersPerfCrossMutrRFC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFC countRF = 0 RFIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrRFM = [] while countRF < setMaxLoopValue[7]: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) RFPickPair = random.sample(RFIntIndex,1) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RF_M', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[7] for loop in range(setMaxLoopValue[7] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFM.append(localCrossMutr[0]) allParametersPerfCrossMutrRFM.append(localCrossMutr[1]) allParametersPerfCrossMutrRFM.append(localCrossMutr[2]) allParametersPerfCrossMutrRFM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFM localCrossMutr.clear() allParametersPerfCrossMutrGradBC = [] while countGradB < setMaxLoopValue[12]: for dr in GradBIDs: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) GradBPickPair = random.sample(GradBIntIndex,2) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradB_C', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[12] for loop in range(setMaxLoopValue[12] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBC.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBC countGradB = 0 GradBIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrGradBM = [] while countGradB < setMaxLoopValue[6]: for dr in GradBIDs: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) GradPickPair = random.sample(GradBIntIndex,1) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradB_M', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[6] for loop in range(setMaxLoopValue[6] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBM.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBM localCrossMutr.clear() allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM + allParametersPerfCrossMutrMLPC + allParametersPerfCrossMutrMLPM + allParametersPerfCrossMutrRFC + allParametersPerfCrossMutrRFM + allParametersPerfCrossMutrGradBC + allParametersPerfCrossMutrGradBM allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRC[0] + allParametersPerfCrossMutrLRM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) allParametersPerformancePerModel[8] = allParametersPerformancePerModel[8] + allParametersPerfCrossMutrMLPC[0] + allParametersPerfCrossMutrMLPM[0] allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPC[3]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPM[3]], ignore_index=True) allParametersPerformancePerModel[12] = allParametersPerformancePerModel[12] + allParametersPerfCrossMutrRFC[0] + allParametersPerfCrossMutrRFM[0] allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFC[1]], ignore_index=True) allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFM[1]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFC[2]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFM[2]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFC[3]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFM[3]], ignore_index=True) allParametersPerformancePerModel[16] = allParametersPerformancePerModel[16] + allParametersPerfCrossMutrGradBC[0] + allParametersPerfCrossMutrGradBM[0] allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBC[3]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBM[3]], ignore_index=True) addKNN = addGradB addLR = addKNN + setMaxLoopValue[16] + setMaxLoopValue[10] addMLP = addLR + setMaxLoopValue[15] + setMaxLoopValue[9] addRF = addMLP + setMaxLoopValue[14] + setMaxLoopValue[8] addGradB = addRF + setMaxLoopValue[13] + setMaxLoopValue[7] return 'Everything Okay' def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): print(clf) search = GridSearchCV( estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_macro','mean_test_recall_macro','mean_test_f1_macro','mean_test_roc_auc_ovo']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='macro')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_macro',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDsCM(): dicKNNC = allParametersPerfCrossMutr[0] dicKNNM = allParametersPerfCrossMutr[4] dicLRC = allParametersPerfCrossMutr[8] dicLRM = allParametersPerfCrossMutr[12] dicMLPC = allParametersPerfCrossMutr[16] dicMLPM = allParametersPerfCrossMutr[20] dicRFC = allParametersPerfCrossMutr[24] dicRFM = allParametersPerfCrossMutr[28] dicGradBC = allParametersPerfCrossMutr[32] dicGradBM = allParametersPerfCrossMutr[36] df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM + dicMLPC + dicMLPM + dicRFC + dicRFM + dicGradBC + dicGradBM return df_concatIDs def PreprocessingMetricsCM(): dicKNNC = allParametersPerfCrossMutr[2] dicKNNM = allParametersPerfCrossMutr[6] dicLRC = allParametersPerfCrossMutr[10] dicLRM = allParametersPerfCrossMutr[14] dicMLPC = allParametersPerfCrossMutr[18] dicMLPM = allParametersPerfCrossMutr[22] dicRFC = allParametersPerfCrossMutr[26] dicRFM = allParametersPerfCrossMutr[30] dicGradBC = allParametersPerfCrossMutr[34] dicGradBM = allParametersPerfCrossMutr[38] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPredCM(): dicKNNC = allParametersPerfCrossMutr[3] dicKNNM = allParametersPerfCrossMutr[7] dicLRC = allParametersPerfCrossMutr[11] dicLRM = allParametersPerfCrossMutr[15] dicMLPC = allParametersPerfCrossMutr[19] dicMLPM = allParametersPerfCrossMutr[23] dicRFC = allParametersPerfCrossMutr[27] dicRFM = allParametersPerfCrossMutr[31] dicGradBC = allParametersPerfCrossMutr[35] dicGradBM = allParametersPerfCrossMutr[39] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) dfKNN = pd.concat([dfKNNC, dfKNNM]) dfLR = pd.concat([dfLRC, dfLRM]) dfMLP = pd.concat([dfMLPC, dfMLPM]) dfRF = pd.concat([dfRFC, dfRFM]) dfGradB = pd.concat([dfGradBC, dfGradBM]) df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingParamCM(): dicKNNC = allParametersPerfCrossMutr[1] dicKNNM = allParametersPerfCrossMutr[5] dicLRC = allParametersPerfCrossMutr[9] dicLRM = allParametersPerfCrossMutr[13] dicMLPC = allParametersPerfCrossMutr[17] dicMLPM = allParametersPerfCrossMutr[21] dicRFC = allParametersPerfCrossMutr[25] dicRFM = allParametersPerfCrossMutr[29] dicGradBC = allParametersPerfCrossMutr[33] dicGradBM = allParametersPerfCrossMutr[37] dicKNNC = dicKNNC['params'] dicKNNM = dicKNNM['params'] dicLRC = dicLRC['params'] dicLRM = dicLRM['params'] dicMLPC = dicMLPC['params'] dicMLPM = dicMLPM['params'] dicRFC = dicRFC['params'] dicRFM = dicRFM['params'] dicGradBC = dicGradBC['params'] dicGradBM = dicGradBM['params'] dicKNNC = {int(k):v for k,v in dicKNNC.items()} dicKNNM = {int(k):v for k,v in dicKNNM.items()} dicLRC = {int(k):v for k,v in dicLRC.items()} dicLRM = {int(k):v for k,v in dicLRM.items()} dicMLPC = {int(k):v for k,v in dicMLPC.items()} dicMLPM = {int(k):v for k,v in dicMLPM.items()} dicRFC = {int(k):v for k,v in dicRFC.items()} dicRFM = {int(k):v for k,v in dicRFM.items()} dicGradBC = {int(k):v for k,v in dicGradBC.items()} dicGradBM = {int(k):v for k,v in dicGradBM.items()} dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) dfKNNC = dfKNNC.T dfKNNM = dfKNNM.T dfLRC = dfLRC.T dfLRM = dfLRM.T dfMLPC = dfMLPC.T dfMLPM = dfMLPM.T dfRFC = dfRFC.T dfRFM = dfRFM.T dfGradBC = dfGradBC.T dfGradBM = dfGradBM.T df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSepCM(): dicKNNC = allParametersPerfCrossMutr[1] dicKNNM = allParametersPerfCrossMutr[5] dicLRC = allParametersPerfCrossMutr[9] dicLRM = allParametersPerfCrossMutr[13] dicMLPC = allParametersPerfCrossMutr[17] dicMLPM = allParametersPerfCrossMutr[21] dicRFC = allParametersPerfCrossMutr[25] dicRFM = allParametersPerfCrossMutr[29] dicGradBC = allParametersPerfCrossMutr[33] dicGradBM = allParametersPerfCrossMutr[37] dicKNNC = dicKNNC['params'] dicKNNM = dicKNNM['params'] dicLRC = dicLRC['params'] dicLRM = dicLRM['params'] dicMLPC = dicMLPC['params'] dicMLPM = dicMLPM['params'] dicRFC = dicRFC['params'] dicRFM = dicRFM['params'] dicGradBC = dicGradBC['params'] dicGradBM = dicGradBM['params'] dicKNNC = {int(k):v for k,v in dicKNNC.items()} dicKNNM = {int(k):v for k,v in dicKNNM.items()} dicLRC = {int(k):v for k,v in dicLRC.items()} dicLRM = {int(k):v for k,v in dicLRM.items()} dicMLPC = {int(k):v for k,v in dicMLPC.items()} dicMLPM = {int(k):v for k,v in dicMLPM.items()} dicRFC = {int(k):v for k,v in dicRFC.items()} dicRFM = {int(k):v for k,v in dicRFM.items()} dicGradBC = {int(k):v for k,v in dicGradBC.items()} dicGradBM = {int(k):v for k,v in dicGradBM.items()} dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) dfKNNC = dfKNNC.T dfKNNM = dfKNNM.T dfLRC = dfLRC.T dfLRM = dfLRM.T dfMLPC = dfMLPC.T dfMLPM = dfMLPM.T dfRFC = dfRFC.T dfRFM = dfRFM.T dfGradBC = dfGradBC.T dfGradBM = dfGradBM.T return [dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM] # remove that maybe! def preProcsumPerMetricCM(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) is 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSelCM(): loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotCrossMutate', methods=["GET", "POST"]) def SendToPlotCM(): while (len(DataResultsRaw) != DataRawLength): pass PreProcessingInitial() response = { 'OverviewResultsCM': ResultsCM } return jsonify(response) def PreProcessingInitial(): XModels = PreprocessingMetricsCM() global allParametersPerfCrossMutr XModels = XModels.fillna(0) ModelSpaceMDSCM = FunMDS(XModels) ModelSpaceTSNECM = FunTsne(XModels) ModelSpaceTSNECM = ModelSpaceTSNECM.tolist() ModelSpaceUMAPCM = FunUMAP(XModels) PredictionProbSel = PreprocessingPredCM() CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel) def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSel): global ResultsCM global AllTargets ResultsCM = [] parametersGen = PreprocessingParamCM() metricsPerModel = preProcMetricsAllAndSelCM() sumPerClassifier = preProcsumPerMetricCM(factors) ModelsIDs = PreprocessingIDsCM() parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() ResultsCM.append(json.dumps(ModelsIDs)) ResultsCM.append(json.dumps(sumPerClassifier)) ResultsCM.append(json.dumps(parametersGenPD)) ResultsCM.append(json.dumps(metricsPerModel)) ResultsCM.append(json.dumps(XDataJSONEntireSet)) ResultsCM.append(json.dumps(XDataColumns)) ResultsCM.append(json.dumps(yData)) ResultsCM.append(json.dumps(target_names)) ResultsCM.append(json.dumps(AllTargets)) ResultsCM.append(json.dumps(ModelSpaceMDSCM)) ResultsCM.append(json.dumps(ModelSpaceTSNECM)) ResultsCM.append(json.dumps(ModelSpaceUMAPCM)) ResultsCM.append(json.dumps(PredictionProbSel)) ResultsCM.append(json.dumps(names_labels)) return ResultsCM def PreprocessingPredSel(SelectedIDs): global addKNN global addLR global addMLP global addRF global addGradB numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDs: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1]) - addKNN) elif (items[0] == 'LR'): numberIDLR.append(int(items[1]) - addLR) elif (items[0] == 'MLP'): numberIDMLP.append(int(items[1]) - addMLP) elif (items[0] == 'RF'): numberIDRF.append(int(items[1]) - addRF) else: numberIDGradB.append(int(items[1]) - addGradB) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = dfKNN.loc[numberIDKNN] dfLR = pd.DataFrame.from_dict(dicLR) dfLR = dfLR.loc[numberIDLR] dfLR.index += addKNN dfMLP = pd.DataFrame.from_dict(dicMLP) dfMLP = dfMLP.loc[numberIDMLP] dfMLP.index += addKNN + addLR dfRF = pd.DataFrame.from_dict(dicRF) dfRF = dfRF.loc[numberIDRF] dfRF.index += addKNN + addLR + addMLP dfGradB = pd.DataFrame.from_dict(dicGradB) dfGradB = dfGradB.loc[numberIDGradB] dfGradB.index += addKNN + addLR + addMLP + addRF df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"]) def RetrieveSelIDsPredict(): global ResultsSelPred ResultsSelPred = [] RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelection = json.loads(RetrieveIDsSelection) RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs'] ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection) return 'Everything Okay' @app.route('/data/RetrievePredictions', methods=["GET", "POST"]) def SendPredictSel(): global ResultsSelPred response = { 'PredictSel': ResultsSelPred } return jsonify(response) def PreprocessingPredSelEnsem(SelectedIDsEnsem): numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDsEnsem: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): numberIDKNN.append(int(items[1])) elif (items[0] == 'LR'): numberIDLR.append(int(items[1])) elif (items[0] == 'MLP'): numberIDMLP.append(int(items[1])) elif (items[0] == 'RF'): numberIDRF.append(int(items[1])) else: numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"]) def RetrieveSelIDsPredictEnsem(): global ResultsSelPredEnsem ResultsSelPredEnsem = [] RetrieveIDsSelectionEnsem = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelectionEnsem = json.loads(RetrieveIDsSelectionEnsem) RetrieveIDsSelectionEnsem = RetrieveIDsSelectionEnsem['predictSelectionIDsCM'] ResultsSelPredEnsem = PreprocessingPredSelEnsem(RetrieveIDsSelectionEnsem) return 'Everything Okay' @app.route('/data/RetrievePredictionsEnsem', methods=["GET", "POST"]) def SendPredictSelEnsem(): global ResultsSelPredEnsem response = { 'PredictSelEnsem': ResultsSelPredEnsem } return jsonify(response) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"]) def RetrieveSelClassifiersID(): ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') #ComputeMetricsForSel(ClassifierIDsList) ClassifierIDCleaned = json.loads(ClassifierIDsList) EnsembleModel(ClassifierIDsList, 1) return 'Everything Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRemoveFromEnsemble', methods=["GET", "POST"]) def RetrieveSelClassifiersIDandRemoveFromEnsemble(): global EnsembleActive ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') ClassifierIDsList = json.loads(ClassifierIDsList) ClassifierIDsListCleaned = ClassifierIDsList['ClassifiersList'] EnsembleActive = [] EnsembleActive = ClassifierIDsListCleaned.copy() return 'Everything Okay'