from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import copy import warnings import re import random import math import pandas as pd import numpy as np import multiprocessing from joblib import Parallel, delayed, Memory from sklearn.pipeline import make_pipeline from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV from sklearn import model_selection from sklearn.model_selection import cross_val_predict from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from imblearn.metrics import geometric_mean_score from sklearn.metrics import classification_report, accuracy_score, make_scorer, confusion_matrix from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn import cluster import umap # this block of code is for the connection between the server, the database, and the client (plus routing) # access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def reset(): global yDataSorted yDataSorted = [] global PerClassResultsClass0 PerClassResultsClass0 = [] global PerClassResultsClass1 PerClassResultsClass1 = [] global Results Results = [] global ResultsCM ResultsCM = [] global ResultsCMSecond ResultsCMSecond = [] global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global KNNModelsCount global LRModelsCount global MLPModelsCount global RFModelsCount global GradBModelsCount global factors factors = [1,1,1,1,0,0,0,0] global crossValidation crossValidation = 5 global randomSearchVar randomSearchVar = 100 global stage1addKNN global stage1addLR global stage1addMLP global stage1addRF global stage1addGradB global stageTotalReached stage1addKNN = 0 stage1addLR = 0 stage1addMLP = 0 stage1addRF = 0 stage1addGradB = 0 stageTotalReached = randomSearchVar*5 global keyData keyData = 0 KNNModelsCount = 0 LRModelsCount = KNNModelsCount+randomSearchVar MLPModelsCount = LRModelsCount+randomSearchVar RFModelsCount = MLPModelsCount+randomSearchVar GradBModelsCount = RFModelsCount+randomSearchVar global storeClass0 storeClass0 = 0 global StanceTest StanceTest = False global storeClass1 storeClass1 = 0 global XData XData = [] global yData yData = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar global countAllModels countAllModels = 0 global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_macro': 'precision_macro', 'recall_macro': 'recall_macro', 'f1_macro': 'f1_macro', 'roc_auc_ovo': 'roc_auc_ovo'} global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] global names_labels names_labels = [] global keySend keySend=0 return 'The reset was done!' # retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def retrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest global DataResultsRawExternal global DataRawLengthExternal global yDataSorted yDataSorted = [] fileName = request.get_data().decode('utf8').replace("'", '"') data = json.loads(fileName) global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global factors factors = data['Factors'] global crossValidation crossValidation = int(data['CrossValidation']) print(crossValidation) global randomSearchVar randomSearchVar = int(data['RandomSearch']) global stage1addKNN global stage1addLR global stage1addMLP global stage1addRF global stage1addGradB global stageTotalReached stage1addKNN = 0 stage1addLR = 0 stage1addMLP = 0 stage1addRF = 0 stage1addGradB = 0 stageTotalReached = randomSearchVar*5 global storeClass0 storeClass0 = 0 global storeClass1 storeClass1 = 0 global XData XData = [] global previousState previousState = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] global EnsembleActive EnsembleActive = [] global addKNN addKNN = 0 global addLR addLR = addKNN+randomSearchVar global addMLP addMLP = addLR+randomSearchVar global addRF addRF = addMLP+randomSearchVar global addGradB addGradB = addRF+randomSearchVar # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_macro': 'precision_macro', 'recall_macro': 'recall_macro', 'f1_macro': 'f1_macro', 'roc_auc_ovo': 'roc_auc_ovo'} # models global KNNModels global MLPModels global LRModels global RFModels global GradBModels KNNModels = [] MLPModels = [] LRModels = [] RFModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] global names_labels names_labels = [] global keySend keySend=0 DataRawLength = -1 DataRawLengthTest = -1 print(data['fileName']) if data['fileName'] == 'heartC': CollectionDB = mongo.db.HeartC.find() names_labels.append('Healthy') names_labels.append('Diseased') elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'biodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() CollectionDBExternal = mongo.db.biodegCExt.find() names_labels.append('Biodegradable') names_labels.append('Non-biodegradable') elif data['fileName'] == 'seismicC': CollectionDB = mongo.db.seismicC.find() names_labels.append('Hazardous') names_labels.append('Non-hazardous') elif data['fileName'] == 'breastC': CollectionDB = mongo.db.diabetesC.find() names_labels.append('Malignant') names_labels.append('Benign') else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] DataResultsRawExternal = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) for index, item in enumerate(CollectionDBExternal): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawExternal.append(item) DataRawLengthExternal = len(DataResultsRawExternal) dataSetSelection() return 'Everything is okay' # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def sendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() global storeClass0 global storeClass1 for item in yData: if (item == 0): storeClass0 = storeClass0 + 1 else: storeClass1 = storeClass1 + 1 return 'Processed uploaded data set' def dataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global XDataExternal, yDataExternal XDataExternal = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResultsExternal = copy.deepcopy(DataResultsRawExternal) for dictionary in DataResultsRawExternal: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawExternal.sort(key=lambda x: x[target], reverse=True) DataResultsExternal.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsExternal: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsExternal = [o[target] for o in DataResultsRawExternal] AllTargetsFloatValuesExternal = [] previous = None Class = 0 for i, value in enumerate(AllTargetsExternal): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesExternal.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesExternal.append(Class) previous = value ArrayDataResultsExternal = pd.DataFrame.from_dict(DataResultsExternal) XDataExternal, yDataExternal = ArrayDataResultsExternal, AllTargetsFloatValuesExternal DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global storeClass0 global storeClass1 for item in yData: if (item == 0): storeClass0 = storeClass0 + 1 else: storeClass1 = storeClass1 + 1 global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] return 'Everything Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def retrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] global XData global yData global countAllModels # loop through the algorithms global allParametersPerformancePerModel global HistoryPreservation global crossValidation for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'MLP': start = 60 stop = 120 step = 1 random.seed(RANDOM_SEED) ranges = [(n, random.randint(1,3)) for n in range(start, stop, step)] clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': ranges,'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(20, 100)), 'max_depth': list(range(2, 20)), 'criterion': ['gini', 'entropy']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) # add exponential in loss params = {'n_estimators': list(range(20, 100)), 'loss': ['deviance','exponential'], 'learning_rate': list(np.arange(0.01,0.56,0.11)), 'subsample': list(np.arange(0.1,1,0.1)), 'criterion': ['friedman_mse', 'mse', 'mae']} countAllModels = countAllModels + randomSearchVar AlgorithmsIDsEnd = countAllModels countAllModels = countAllModels + randomSearchVar allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd,crossValidation) HistoryPreservation = allParametersPerformancePerModel.copy() # call the function that sends the results to the frontend return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) @memory.cache def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd,crossValidation): print(clf) search = RandomizedSearchCV( estimator=clf, param_distributions=params, n_iter=100, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_macro','mean_test_recall_macro','mean_test_f1_macro','mean_test_roc_auc_ovo']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='macro')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_macro',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDs(): dicKNN = allParametersPerformancePerModel[0] dicLR = allParametersPerformancePerModel[4] dicMLP = allParametersPerformancePerModel[8] dicRF = allParametersPerformancePerModel[12] dicGradB = allParametersPerformancePerModel[16] df_concatIDs = dicKNN + dicLR + dicMLP + dicRF + dicGradB return df_concatIDs def PreprocessingMetrics(): global allParametersPerformancePerModel dicKNN = allParametersPerformancePerModel[2] dicLR = allParametersPerformancePerModel[6] dicMLP = allParametersPerformancePerModel[10] dicRF = allParametersPerformancePerModel[14] dicGradB = allParametersPerformancePerModel[18] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingMetricsEnsem(): global allParametersPerformancePerModelEnsem dicKNN = allParametersPerformancePerModelEnsem[2] dicLR = allParametersPerformancePerModelEnsem[6] dicMLP = allParametersPerformancePerModelEnsem[10] dicRF = allParametersPerformancePerModelEnsem[14] dicGradB = allParametersPerformancePerModelEnsem[18] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatMetrics = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPred(): dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs.reset_index(drop=True) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def computeClusters(dataLocal,one,two,three,four,five): if (len(dataLocal) != 0): XKNN = np.array(list(zip(one,np.zeros(len(one)))), dtype=np.int) XLR = np.array(list(zip(two,np.zeros(len(two)))), dtype=np.int) XMLP = np.array(list(zip(three,np.zeros(len(three)))), dtype=np.int) XRF = np.array(list(zip(four,np.zeros(len(four)))), dtype=np.int) XGradB = np.array(list(zip(five,np.zeros(len(five)))), dtype=np.int) X = np.array(list(zip(dataLocal,np.zeros(len(dataLocal)))), dtype=np.int) ms = cluster.KMeans(n_clusters=169,random_state=RANDOM_SEED, n_jobs=-1) ms.fit(X) labels = ms.labels_ #labels_unique = np.unique(labels) #n_clusters_ = len(labels) gatherPointsAv = [] gatherPointsKNN = [] gatherPointsLR = [] gatherPointsMLP = [] gatherPointsRF = [] gatherPointsGradB = [] for k in range(169): my_members = labels == k if (len(X[my_members, 0]) == 0): gatherPointsAv.append(0) else: gatherPointsAv.append(sum(X[my_members, 0])/len(X[my_members, 0])) if (len(one) == 0): gatherPointsKNN = [] elif (len(XKNN[my_members, 0]) == 0): gatherPointsKNN.append(0) else: gatherPointsKNN.append(sum(XKNN[my_members, 0])/len(XKNN[my_members, 0])) if (len(two) == 0): gatherPointsLR = [] elif (len(XLR[my_members, 0]) == 0): gatherPointsLR.append(0) else: gatherPointsLR.append(sum(XLR[my_members, 0])/len(XLR[my_members, 0])) if (len(three) == 0): gatherPointsMLP = [] elif (len(XMLP[my_members, 0]) == 0): gatherPointsMLP.append(0) else: gatherPointsMLP.append(sum(XMLP[my_members, 0])/len(XMLP[my_members, 0])) if (len(four) == 0): gatherPointsRF = [] elif (len(XRF[my_members, 0]) == 0): gatherPointsRF.append(0) else: gatherPointsRF.append(sum(XRF[my_members, 0])/len(XRF[my_members, 0])) if (len(five) == 0): gatherPointsGradB = [] elif (len(XGradB[my_members, 0]) == 0): gatherPointsGradB.append(0) else: gatherPointsGradB.append(sum(XGradB[my_members, 0])/len(XGradB[my_members, 0])) else: gatherPointsAv = [] return [gatherPointsAv,gatherPointsKNN,gatherPointsLR,gatherPointsMLP,gatherPointsRF,gatherPointsGradB] def EnsembleIDs(): global EnsembleActive global numberIDKNNGlob global numberIDLRGlob global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob numberIDKNNGlob = [] numberIDLRGlob = [] numberIDMLPGlob = [] numberIDRFGlob = [] numberIDGradBGlob = [] for el in EnsembleActive: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if ((items[0] == "KNN") | (items[0] == "KNNC") | (items[0] == "KNNM") | (items[0] == "KNNCC") | (items[0] == "KNNCM") | (items[0] == "KNNMC") | (items[0] == "KNNMM")): numberIDKNNGlob.append(int(items[1])) elif ((items[0] == "LR") | (items[0] == "LRC") | (items[0] == "LRM") | (items[0] == "LRCC") | (items[0] == "LRCM") | (items[0] == "LRMC") | (items[0] == "LRMM")): numberIDLRGlob.append(int(items[1])) elif ((items[0] == "MLP") | (items[0] == "MLPC") | (items[0] == "MLPM") | (items[0] == "MLPCC") | (items[0] == "MLPCM") | (items[0] == "MLPMC") | (items[0] == "MLPMM")): numberIDMLPGlob.append(int(items[1])) elif ((items[0] == "RF") | (items[0] == "RFC") | (items[0] == "RFM") | (items[0] == "RFCC") | (items[0] == "RFCM") | (items[0] == "RFMC") | (items[0] == "RFMM")): numberIDRFGlob.append(int(items[1])) else: numberIDGradBGlob.append(int(items[1])) EnsembleIdsAll = numberIDKNNGlob + numberIDLRGlob + numberIDMLPGlob + numberIDRFGlob + numberIDGradBGlob return EnsembleIdsAll def PreprocessingPredEnsemble(): global EnsembleActive global allParametersPerformancePerModelEnsem numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in EnsembleActive: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if ((items[0] == "KNN") | (items[0] == "KNNC") | (items[0] == "KNNM") | (items[0] == "KNNCC") | (items[0] == "KNNCM") | (items[0] == "KNNMC") | (items[0] == "KNNMM")): numberIDKNN.append(int(items[1])) elif ((items[0] == "LR") | (items[0] == "LRC") | (items[0] == "LRM") | (items[0] == "LRCC") | (items[0] == "LRCM") | (items[0] == "LRMC") | (items[0] == "LRMM")): numberIDLR.append(int(items[1])) elif ((items[0] == "MLP") | (items[0] == "MLPC") | (items[0] == "MLPM") | (items[0] == "MLPCC") | (items[0] == "MLPCM") | (items[0] == "MLPMC") | (items[0] == "MLPMM")): numberIDMLP.append(int(items[1])) elif ((items[0] == "RF") | (items[0] == "RFC") | (items[0] == "RFM") | (items[0] == "RFCC") | (items[0] == "RFCM") | (items[0] == "RFMC") | (items[0] == "RFMM")): numberIDRF.append(int(items[1])) else: numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModelEnsem[3] dicLR = allParametersPerformancePerModelEnsem[7] dicMLP = allParametersPerformancePerModelEnsem[11] dicRF = allParametersPerformancePerModelEnsem[15] dicGradB = allParametersPerformancePerModelEnsem[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingParam(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamEnsem(): dicKNN = allParametersPerformancePerModelEnsem[1] dicLR = allParametersPerformancePerModelEnsem[5] dicMLP = allParametersPerformancePerModelEnsem[9] dicRF = allParametersPerformancePerModelEnsem[13] dicGradB = allParametersPerformancePerModelEnsem[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T df_params = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSep(): dicKNN = allParametersPerformancePerModel[1] dicLR = allParametersPerformancePerModel[5] dicMLP = allParametersPerformancePerModel[9] dicRF = allParametersPerformancePerModel[13] dicGradB = allParametersPerformancePerModel[17] dicKNN = dicKNN['params'] dicLR = dicLR['params'] dicMLP = dicMLP['params'] dicRF = dicRF['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfLR = dfLR.T dfMLP = dfMLP.T dfRF = dfRF.T dfGradB = dfGradB.T return [dfKNN, dfLR, dfMLP, dfRF, dfGradB] def preProcsumPerMetric(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcsumPerMetricEnsem(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetricsEnsem() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSel(): loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def preProcMetricsAllAndSelEnsem(): loopThroughMetrics = PreprocessingMetricsEnsem() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data) tsne.shape return tsne def FunUMAP (data): trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data) Xpos = trans.embedding_[:, 0].tolist() Ypos = trans.embedding_[:, 1].tolist() return [Xpos,Ypos] # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotClassifiers', methods=["GET", "POST"]) def SendToPlot(): while (len(DataResultsRaw) != DataRawLength): pass InitializeEnsemble() response = { 'OverviewResults': Results } return jsonify(response) def InitializeEnsemble(): global ModelSpaceMDS global ModelSpaceTSNE global allParametersPerformancePerModel global EnsembleActive global ModelsIDs global keySend global metricsPerModel global factors if (len(EnsembleActive) == 0): XModels = PreprocessingMetrics() parametersGen = PreprocessingParam() PredictionProbSel = PreprocessingPred() ModelsIDs = PreprocessingIDs() sumPerClassifier = preProcsumPerMetric(factors) metricsPerModel = preProcMetricsAllAndSel() else: XModels = PreprocessingMetricsEnsem() parametersGen = PreprocessingParamEnsem() PredictionProbSel = PreprocessingPredEnsemble() ModelsIDs = EnsembleActive modelsIdsCuts = EnsembleIDs() sumPerClassifier = preProcsumPerMetricEnsem(factors) metricsPerModel = preProcMetricsAllAndSelEnsem() EnsembleModel(modelsIdsCuts, keySend) keySend=1 XModels = XModels.fillna(0) dropMetrics = [] for index, element in enumerate(factors): if (element == 0): dropMetrics.append(index) XModels.drop(XModels.columns[dropMetrics], axis=1, inplace=True) ModelSpaceMDS = FunMDS(XModels) ModelSpaceTSNE = FunTsne(XModels) ModelSpaceTSNE = ModelSpaceTSNE.tolist() ModelSpaceUMAP = FunUMAP(XModels) returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,parametersGen,sumPerClassifier,PredictionProbSel) def EnsembleModel (Models, keyRetrieved): global XDataTest, yDataTest global XDataExternal, yDataExternal global scores global previousState global crossValidation global keyData scores = [] global all_classifiersSelection all_classifiersSelection = [] global all_classifiers global XData global yData global sclf global randomSearchVar greater = randomSearchVar*5 global stage1addKNN global stage1addLR global stage1addMLP global stage1addRF global stage1addGradB global stageTotalReached global numberIDKNNGlob global numberIDLRGlob global numberIDMLPGlob global numberIDRFGlob global numberIDGradBGlob all_classifiers = [] columnsInit = [] columnsInit = [XData.columns.get_loc(c) for c in XData.columns if c in XData] temp = allParametersPerformancePerModel[1] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamKNN = pd.DataFrame.from_dict(tempDic) dfParamKNNFilt = dfParamKNN.iloc[:,0] for eachelem in numberIDKNNGlob: if (eachelem >= stageTotalReached): arg = dfParamKNNFilt[eachelem-addKNN] elif (eachelem >= greater): arg = dfParamKNNFilt[eachelem-stage1addKNN] else: arg = dfParamKNNFilt[eachelem-KNNModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), KNeighborsClassifier().set_params(**arg))) temp = allParametersPerformancePerModel[5] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamLR = pd.DataFrame.from_dict(tempDic) dfParamLRFilt = dfParamLR.iloc[:,0] for eachelem in numberIDLRGlob: if (eachelem >= stageTotalReached): arg = dfParamLRFilt[eachelem-addLR] elif (eachelem >= greater): arg = dfParamLRFilt[eachelem-stage1addLR] else: arg = dfParamLRFilt[eachelem-LRModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), LogisticRegression(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[9] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamMLP = pd.DataFrame.from_dict(tempDic) dfParamMLPFilt = dfParamMLP.iloc[:,0] for eachelem in numberIDMLPGlob: if (eachelem >= stageTotalReached): arg = dfParamMLPFilt[eachelem-addMLP] elif (eachelem >= greater): arg = dfParamMLPFilt[eachelem-stage1addMLP] else: arg = dfParamMLPFilt[eachelem-MLPModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), MLPClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[13] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamRF = pd.DataFrame.from_dict(tempDic) dfParamRFFilt = dfParamRF.iloc[:,0] for eachelem in numberIDRFGlob: if (eachelem >= stageTotalReached): arg = dfParamRFFilt[eachelem-addRF] elif (eachelem >= greater): arg = dfParamRFFilt[eachelem-stage1addRF] else: arg = dfParamRFFilt[eachelem-RFModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), RandomForestClassifier(random_state=RANDOM_SEED).set_params(**arg))) temp = allParametersPerformancePerModel[17] temp = temp['params'] temp = {int(k):v for k,v in temp.items()} tempDic = { 'params': temp } dfParamGradB = pd.DataFrame.from_dict(tempDic) dfParamGradBFilt = dfParamGradB.iloc[:,0] for eachelem in numberIDGradBGlob: if (eachelem >= stageTotalReached): arg = dfParamGradBFilt[eachelem-addGradB] elif (eachelem >= greater): arg = dfParamGradBFilt[eachelem-stage1addGradB] else: arg = dfParamGradBFilt[eachelem-GradBModelsCount] all_classifiers.append(make_pipeline(ColumnSelector(cols=columnsInit), GradientBoostingClassifier(random_state=RANDOM_SEED).set_params(**arg))) global sclf sclf = 0 sclf = EnsembleVoteClassifier(clfs=all_classifiers, voting='soft') global PerClassResultsClass0 PerClassResultsClass0 = [] global PerClassResultsClass1 PerClassResultsClass1 = [] nested_score = model_selection.cross_val_score(sclf, X=XData, y=yData, cv=crossValidation, scoring=make_scorer(classification_report_with_accuracy_score)) PerClassResultsClass0Con = pd.concat(PerClassResultsClass0, axis=1, sort=False) PerClassResultsClass1Con = pd.concat(PerClassResultsClass1, axis=1, sort=False) averageClass0 = PerClassResultsClass0Con.mean(axis=1) averageClass1 = PerClassResultsClass1Con.mean(axis=1) y_pred = cross_val_predict(sclf, XData, yData, cv=crossValidation) conf_mat = confusion_matrix(yData, y_pred) cm = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis] cm.diagonal() if (keyRetrieved == 0): scores.append(cm[0][0]) scores.append(cm[1][1]) scores.append(cm[0][0]) scores.append(cm[1][1]) scores.append(averageClass0.precision) scores.append(averageClass1.precision) scores.append(averageClass0.precision) scores.append(averageClass1.precision) scores.append(averageClass0.recall) scores.append(averageClass1.recall) scores.append(averageClass0.recall) scores.append(averageClass1.recall) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) previousState.append(scores[0]) previousState.append(scores[1]) previousState.append(scores[4]) previousState.append(scores[5]) previousState.append(scores[8]) previousState.append(scores[9]) previousState.append(scores[12]) previousState.append(scores[13]) else: scores.append(cm[0][0]) scores.append(cm[1][1]) if (cm[0][0] > previousState[0]): scores.append(cm[0][0]) previousState[0] = cm[0][0] else: scores.append(previousState[0]) if (cm[1][1] > previousState[1]): scores.append(cm[1][1]) previousState[1] = cm[1][1] else: scores.append(previousState[1]) scores.append(averageClass0.precision) scores.append(averageClass1.precision) if (averageClass0.precision > previousState[2]): scores.append(averageClass0.precision) previousState[2] = averageClass0.precision else: scores.append(previousState[2]) if (averageClass1.precision > previousState[3]): scores.append(averageClass1.precision) previousState[3] = averageClass1.precision else: scores.append(previousState[3]) scores.append(averageClass0.recall) scores.append(averageClass1.recall) if (averageClass0.recall > previousState[4]): scores.append(averageClass0.recall) previousState[4] = averageClass0.recall else: scores.append(previousState[4]) if (averageClass1.recall > previousState[5]): scores.append(averageClass1.recall) previousState[5] = averageClass1.recall else: scores.append(previousState[5]) scores.append(averageClass0['f1-score']) scores.append(averageClass1['f1-score']) if (averageClass0['f1-score'] > previousState[6]): scores.append(averageClass0['f1-score']) previousState[6] = averageClass0['f1-score'] else: scores.append(previousState[6]) if (averageClass1['f1-score'] > previousState[7]): scores.append(averageClass1['f1-score']) previousState[7] = averageClass1['f1-score'] else: scores.append(previousState[7]) global StanceTest if (StanceTest): sclf.fit(XData, yData) y_pred = sclf.predict(XDataTest) print('Test data set') print(accuracy_score(yDataTest, y_pred)) print(classification_report(yDataTest, y_pred)) y_pred = sclf.predict(XDataExternal) print('External data set') print(accuracy_score(yDataExternal, y_pred)) print(classification_report(yDataExternal, y_pred)) return 'Okay' # Sending the final results to be visualized as a line plot @app.route('/data/SendFinalResultsBacktoVisualize', methods=["GET", "POST"]) def SendToPlotFinalResults(): global scores response = { 'FinalResults': scores } return jsonify(response) def classification_report_with_accuracy_score(y_true, y_pred): global PerClassResultsClass0 global PerClassResultsClass1 PerClassResultsLocal = pd.DataFrame.from_dict(classification_report(y_true, y_pred, output_dict=True)) Filter_PerClassResultsLocal0 = PerClassResultsLocal['0'] Filter_PerClassResultsLocal0 = Filter_PerClassResultsLocal0[:-1] Filter_PerClassResultsLocal1 = PerClassResultsLocal['1'] Filter_PerClassResultsLocal1 = Filter_PerClassResultsLocal1[:-1] PerClassResultsClass0.append(Filter_PerClassResultsLocal0) PerClassResultsClass1.append(Filter_PerClassResultsLocal1) return accuracy_score(y_true, y_pred) # return accuracy score def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,parametersGen,sumPerClassifier,PredictionProbSel): global Results global AllTargets global names_labels global EnsembleActive global ModelsIDs global metricsPerModel global yDataSorted global storeClass0 global storeClass1 if(storeClass0 > 169 or storeClass1 > 169): mode = 1 else: mode = 0 Results = [] parametersGenPD = parametersGen.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() Results.append(json.dumps(ModelsIDs)) Results.append(json.dumps(sumPerClassifier)) Results.append(json.dumps(parametersGenPD)) Results.append(json.dumps(metricsPerModel)) Results.append(json.dumps(XDataJSONEntireSet)) Results.append(json.dumps(XDataColumns)) Results.append(json.dumps(yData)) Results.append(json.dumps(target_names)) Results.append(json.dumps(AllTargets)) Results.append(json.dumps(ModelSpaceMDS)) Results.append(json.dumps(ModelSpaceTSNE)) Results.append(json.dumps(ModelSpaceUMAP)) Results.append(json.dumps(PredictionProbSel)) Results.append(json.dumps(names_labels)) Results.append(json.dumps(yDataSorted)) Results.append(json.dumps(mode)) return Results # Initialize crossover and mutation processes @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/CrossoverMutation', methods=["GET", "POST"]) def CrossoverMutateFun(): # get the models from the frontend RemainingIds = request.get_data().decode('utf8').replace("'", '"') RemainingIds = json.loads(RemainingIds) RemainingIds = RemainingIds['RemainingPoints'] global EnsembleActive global CurStage EnsembleActive = request.get_data().decode('utf8').replace("'", '"') EnsembleActive = json.loads(EnsembleActive) EnsembleActive = EnsembleActive['StoreEnsemble'] setMaxLoopValue = request.get_data().decode('utf8').replace("'", '"') setMaxLoopValue = json.loads(setMaxLoopValue) setMaxLoopValue = setMaxLoopValue['loopNumber'] CurStage = request.get_data().decode('utf8').replace("'", '"') CurStage = json.loads(CurStage) CurStage = CurStage['Stage'] if (CurStage == 1): InitializeFirstStageCM(RemainingIds, setMaxLoopValue) elif (CurStage == 2): InitializeSecondStageCM(RemainingIds, setMaxLoopValue) else: RemoveSelected(RemainingIds) return 'Okay' def RemoveSelected(RemainingIds): global allParametersPerfCrossMutr for loop in range(20): indexes = [] for i, val in enumerate(allParametersPerfCrossMutr[loop*4]): if (val not in RemainingIds): indexes.append(i) for index in sorted(indexes, reverse=True): del allParametersPerfCrossMutr[loop*4][index] allParametersPerfCrossMutr[loop*4+1].drop(allParametersPerfCrossMutr[loop*4+1].index[indexes], inplace=True) allParametersPerfCrossMutr[loop*4+2].drop(allParametersPerfCrossMutr[loop*4+2].index[indexes], inplace=True) allParametersPerfCrossMutr[loop*4+3].drop(allParametersPerfCrossMutr[loop*4+3].index[indexes], inplace=True) return 'Okay' def InitializeSecondStageCM (RemainingIds, setMaxLoopValue): random.seed(RANDOM_SEED) global XData global yData global addKNN global addLR global addMLP global addRF global addGradB global countAllModels # loop through the algorithms global allParametersPerfCrossMutr global HistoryPreservation global randomSearchVar greater = randomSearchVar*5 KNNIDsC = list(filter(lambda k: 'KNNC' in k, RemainingIds)) LRIDsC = list(filter(lambda k: 'LRC' in k, RemainingIds)) MLPIDsC = list(filter(lambda k: 'MLPC' in k, RemainingIds)) RFIDsC = list(filter(lambda k: 'RFC' in k, RemainingIds)) GradBIDsC = list(filter(lambda k: 'GradBC' in k, RemainingIds)) KNNIDsM = list(filter(lambda k: 'KNNM' in k, RemainingIds)) LRIDsM = list(filter(lambda k: 'LRM' in k, RemainingIds)) MLPIDsM = list(filter(lambda k: 'MLPM' in k, RemainingIds)) RFIDsM = list(filter(lambda k: 'RFM' in k, RemainingIds)) GradBIDsM = list(filter(lambda k: 'GradBM' in k, RemainingIds)) countKNN = 0 countLR = 0 countMLP = 0 countRF = 0 countGradB = 0 paramAllAlgs = PreprocessingParam() KNNIntIndex = [] LRIntIndex = [] MLPIntIndex = [] RFIntIndex = [] GradBIntIndex = [] localCrossMutr = [] allParametersPerfCrossMutrKNNCC = [] for dr in KNNIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[40]: KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNCC', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[40] for loop in range(setMaxLoopValue[40] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNCC.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNCC.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNCC.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNCC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNCC countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNCM = [] for dr in KNNIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[34]: KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_neighbors'): randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNCM', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[34] for loop in range(setMaxLoopValue[34] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNCM.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNCM.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNCM.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNCM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNCM countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNMC = [] for dr in KNNIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[28]: KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNMC', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[28] for loop in range(setMaxLoopValue[28] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNMC.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNMC.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNMC.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNMC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNMC countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNMM = [] for dr in KNNIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[22]: KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_neighbors'): randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNMM', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[22] for loop in range(setMaxLoopValue[22] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNMM.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNMM.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNMM.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNMM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNMM localCrossMutr.clear() allParametersPerfCrossMutrLRCC = [] for dr in LRIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[39]: LRPickPair = random.sample(LRIntIndex,2) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRCC', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[39] for loop in range(setMaxLoopValue[39] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRCC.append(localCrossMutr[0]) allParametersPerfCrossMutrLRCC.append(localCrossMutr[1]) allParametersPerfCrossMutrLRCC.append(localCrossMutr[2]) allParametersPerfCrossMutrLRCC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRCC countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRCM = [] for dr in LRIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[33]: LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'C'): randomNumber = random.randint(101, 1000) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRCM', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[33] for loop in range(setMaxLoopValue[33] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRCM.append(localCrossMutr[0]) allParametersPerfCrossMutrLRCM.append(localCrossMutr[1]) allParametersPerfCrossMutrLRCM.append(localCrossMutr[2]) allParametersPerfCrossMutrLRCM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRCM countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRMC = [] for dr in LRIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[27]: LRPickPair = random.sample(LRIntIndex,2) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRMC', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[27] for loop in range(setMaxLoopValue[27] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRMC.append(localCrossMutr[0]) allParametersPerfCrossMutrLRMC.append(localCrossMutr[1]) allParametersPerfCrossMutrLRMC.append(localCrossMutr[2]) allParametersPerfCrossMutrLRMC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRMC countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRMM = [] for dr in LRIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[21]: LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'C'): randomNumber = random.randint(101, 1000) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRMM', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[21] for loop in range(setMaxLoopValue[21] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRMM.append(localCrossMutr[0]) allParametersPerfCrossMutrLRMM.append(localCrossMutr[1]) allParametersPerfCrossMutrLRMM.append(localCrossMutr[2]) allParametersPerfCrossMutrLRMM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRMM localCrossMutr.clear() allParametersPerfCrossMutrMLPCC = [] for dr in MLPIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[38]: MLPPickPair = random.sample(MLPIntIndex,2) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPCC', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[38] for loop in range(setMaxLoopValue[38] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPCC.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPCC.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPCC.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPCC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPCC countMLP = 0 MLPIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrMLPCM = [] for dr in MLPIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[32]: MLPPickPair = random.sample(MLPIntIndex,1) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'hidden_layer_sizes'): randomNumber = (random.randint(10,60), random.randint(4,10)) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPCM', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[32] for loop in range(setMaxLoopValue[32] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPCM.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPCM.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPCM.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPCM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPCM countMLP = 0 MLPIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrMLPMC = [] for dr in MLPIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[26]: MLPPickPair = random.sample(MLPIntIndex,2) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPMC', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[26] for loop in range(setMaxLoopValue[26] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPMC.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPMC.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPMC.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPMC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPMC countMLP = 0 MLPIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrMLPMM = [] for dr in MLPIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[20]: MLPPickPair = random.sample(MLPIntIndex,1) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'hidden_layer_sizes'): randomNumber = (random.randint(10,60), random.randint(4,10)) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPMM', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[20] for loop in range(setMaxLoopValue[20] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPMM.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPMM.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPMM.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPMM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPMM localCrossMutr.clear() allParametersPerfCrossMutrRFCC = [] for dr in RFIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) while countRF < setMaxLoopValue[37]: RFPickPair = random.sample(RFIntIndex,2) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFCC', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[37] for loop in range(setMaxLoopValue[37] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFCC.append(localCrossMutr[0]) allParametersPerfCrossMutrRFCC.append(localCrossMutr[1]) allParametersPerfCrossMutrRFCC.append(localCrossMutr[2]) allParametersPerfCrossMutrRFCC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFCC countRF = 0 RFIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrRFCM = [] for dr in RFIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) while countRF < setMaxLoopValue[31]: RFPickPair = random.sample(RFIntIndex,1) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFCM', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[31] for loop in range(setMaxLoopValue[31] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFCM.append(localCrossMutr[0]) allParametersPerfCrossMutrRFCM.append(localCrossMutr[1]) allParametersPerfCrossMutrRFCM.append(localCrossMutr[2]) allParametersPerfCrossMutrRFCM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFCM countRF = 0 RFIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrRFMC = [] while countRF < setMaxLoopValue[25]: for dr in RFIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) RFPickPair = random.sample(RFIntIndex,2) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFMC', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[25] for loop in range(setMaxLoopValue[25] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFMC.append(localCrossMutr[0]) allParametersPerfCrossMutrRFMC.append(localCrossMutr[1]) allParametersPerfCrossMutrRFMC.append(localCrossMutr[2]) allParametersPerfCrossMutrRFMC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFMC countRF = 0 RFIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrRFMM = [] for dr in RFIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) while countRF < setMaxLoopValue[19]: RFPickPair = random.sample(RFIntIndex,1) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFMM', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[19] for loop in range(setMaxLoopValue[19] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFMM.append(localCrossMutr[0]) allParametersPerfCrossMutrRFMM.append(localCrossMutr[1]) allParametersPerfCrossMutrRFMM.append(localCrossMutr[2]) allParametersPerfCrossMutrRFMM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFMM localCrossMutr.clear() allParametersPerfCrossMutrGradBCC = [] for dr in GradBIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[36]: GradBPickPair = random.sample(GradBIntIndex,2) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBCC', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[36] for loop in range(setMaxLoopValue[36] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBCC.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBCC.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBCC.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBCC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBCC countGradB = 0 GradBIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrGradBCM = [] for dr in GradBIDsC: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[30]: GradBPickPair = random.sample(GradBIndex,1) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBCM', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[30] for loop in range(setMaxLoopValue[30] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBCM.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBCM.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBCM.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBCM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBCM countGradB = 0 GradBIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrGradBMC = [] for dr in GradBIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[24]: GradBPickPair = random.sample(GradBIntIndex,2) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBMC', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[24] for loop in range(setMaxLoopValue[24] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBMC.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBMC.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBMC.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBMC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBMC countGradB = 0 GradBIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrGradBMM = [] for dr in GradBIDsM: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[18]: GradBPickPair = random.sample(GradBIntIndex,1) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBMM', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[18] for loop in range(setMaxLoopValue[18] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBMM.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBMM.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBMM.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBMM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBMM localCrossMutr.clear() global allParametersPerformancePerModelEnsem allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNCC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNCM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNCC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNCM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNCC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNCM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRCC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRCM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRCC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRCM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRCC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRCM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPCC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPCM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPCC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPCM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPCC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPCM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFCC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFCM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFCC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFCM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFCC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFCM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBCC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBCM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBCC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBCM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBCC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBCM[3]], ignore_index=True) # MUTATION allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNMC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNMM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNMC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNMM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNMC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNMM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRMC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRMM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRMC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRMM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRMC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRMM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPMC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPMM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPMC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPMM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPMC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPMM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFMC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFMM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFMC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFMM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFMC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFMM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBMC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBMM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBMC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBMM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBMC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBMM[3]], ignore_index=True) allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNCC + allParametersPerfCrossMutrKNNCM + allParametersPerfCrossMutrLRCC + allParametersPerfCrossMutrLRCM + allParametersPerfCrossMutrMLPCC + allParametersPerfCrossMutrMLPCM + allParametersPerfCrossMutrRFCC + allParametersPerfCrossMutrRFCM + allParametersPerfCrossMutrGradBCC + allParametersPerfCrossMutrGradBCM + allParametersPerfCrossMutrKNNMC + allParametersPerfCrossMutrKNNMM + allParametersPerfCrossMutrLRMC + allParametersPerfCrossMutrLRMM + allParametersPerfCrossMutrMLPMC + allParametersPerfCrossMutrMLPMM + allParametersPerfCrossMutrRFMC + allParametersPerfCrossMutrRFMM + allParametersPerfCrossMutrGradBMC + allParametersPerfCrossMutrGradBMM allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNCC[0] + allParametersPerfCrossMutrKNNCM[0] allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNCC[1]], ignore_index=True) allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNCM[1]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNCC[2]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNCM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNCC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNCM[3]], ignore_index=True) allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRCC[0] + allParametersPerfCrossMutrLRCM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRCC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRCM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRCC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRCM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRCC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRCM[3]], ignore_index=True) allParametersPerformancePerModel[8] = allParametersPerformancePerModel[8] + allParametersPerfCrossMutrMLPCC[0] + allParametersPerfCrossMutrMLPCM[0] allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPCC[1]], ignore_index=True) allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPCM[1]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPCC[2]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPCM[2]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPCC[3]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPCM[3]], ignore_index=True) allParametersPerformancePerModel[12] = allParametersPerformancePerModel[12] + allParametersPerfCrossMutrRFCC[0] + allParametersPerfCrossMutrRFCM[0] allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFCC[1]], ignore_index=True) allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFCM[1]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFCC[2]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFCM[2]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFCC[3]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFCM[3]], ignore_index=True) allParametersPerformancePerModel[16] = allParametersPerformancePerModel[16] + allParametersPerfCrossMutrGradBCC[0] + allParametersPerfCrossMutrGradBCM[0] allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBCC[1]], ignore_index=True) allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBCM[1]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBCC[2]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBCM[2]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBCC[3]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBCM[3]], ignore_index=True) allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNMC[0] + allParametersPerfCrossMutrKNNMM[0] allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNMC[1]], ignore_index=True) allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNMM[1]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNMC[2]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNMM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNMC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNMM[3]], ignore_index=True) allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRMC[0] + allParametersPerfCrossMutrLRMM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRMC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRMM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRMC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRMM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRMC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRMM[3]], ignore_index=True) allParametersPerformancePerModel[8] = allParametersPerformancePerModel[8] + allParametersPerfCrossMutrMLPMC[0] + allParametersPerfCrossMutrMLPMM[0] allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPMC[1]], ignore_index=True) allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPMM[1]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPMC[2]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPMM[2]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPMC[3]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPMM[3]], ignore_index=True) allParametersPerformancePerModel[12] = allParametersPerformancePerModel[12] + allParametersPerfCrossMutrRFMC[0] + allParametersPerfCrossMutrRFMM[0] allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFMC[1]], ignore_index=True) allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFMM[1]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFMC[2]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFMM[2]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFMC[3]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFMM[3]], ignore_index=True) allParametersPerformancePerModel[16] = allParametersPerformancePerModel[16] + allParametersPerfCrossMutrGradBMC[0] + allParametersPerfCrossMutrGradBMM[0] allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBMC[1]], ignore_index=True) allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBMM[1]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBMC[2]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBMM[2]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBMC[3]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBMM[3]], ignore_index=True) addKNN = addGradB addLR = addKNN + setMaxLoopValue[40] + setMaxLoopValue[34] + setMaxLoopValue[28] + setMaxLoopValue[22] addMLP = addLR + setMaxLoopValue[39] + setMaxLoopValue[33] + setMaxLoopValue[27] + setMaxLoopValue[21] addRF = addMLP + setMaxLoopValue[38] + setMaxLoopValue[32] + setMaxLoopValue[26] + setMaxLoopValue[20] addGradB = addRF + setMaxLoopValue[37] + setMaxLoopValue[31] + setMaxLoopValue[25] + setMaxLoopValue[19] return 'Everything Okay' def InitializeFirstStageCM (RemainingIds, setMaxLoopValue): random.seed(RANDOM_SEED) global XData global yData global addKNN global addLR global addMLP global addRF global addGradB global countAllModels # loop through the algorithms global allParametersPerfCrossMutr global HistoryPreservation global allParametersPerformancePerModel global randomSearchVar greater = randomSearchVar*5 KNNIDs = list(filter(lambda k: 'KNN' in k, RemainingIds)) LRIDs = list(filter(lambda k: 'LR' in k, RemainingIds)) MLPIDs = list(filter(lambda k: 'MLP' in k, RemainingIds)) RFIDs = list(filter(lambda k: 'RF' in k, RemainingIds)) GradBIDs = list(filter(lambda k: 'GradB' in k, RemainingIds)) countKNN = 0 countLR = 0 countMLP = 0 countRF = 0 countGradB = 0 paramAllAlgs = PreprocessingParam() KNNIntIndex = [] LRIntIndex = [] MLPIntIndex = [] RFIntIndex = [] GradBIntIndex = [] localCrossMutr = [] allParametersPerfCrossMutrKNNC = [] for dr in KNNIDs: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[16]: KNNPickPair = random.sample(KNNIntIndex,2) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNC', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[16] for loop in range(setMaxLoopValue[16] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNC.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNC countKNN = 0 KNNIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrKNNM = [] for dr in KNNIDs: if (int(re.findall('\d+', dr)[0]) >= greater): KNNIntIndex.append(int(re.findall('\d+', dr)[0])-addKNN) else: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) while countKNN < setMaxLoopValue[10]: KNNPickPair = random.sample(KNNIntIndex,1) pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_neighbors'): randomNumber = random.randint(101, math.floor(((len(yData)/crossValidation)*(crossValidation-1)))-1) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['algorithm'] == crossoverDF['algorithm'].iloc[0]) & (paramAllAlgs['metric'] == crossoverDF['metric'].iloc[0]) & (paramAllAlgs['n_neighbors'] == crossoverDF['n_neighbors'].iloc[0]) & (paramAllAlgs['weights'] == crossoverDF['weights'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNNM', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[10] for loop in range(setMaxLoopValue[10] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrKNNM.append(localCrossMutr[0]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[1]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[2]) allParametersPerfCrossMutrKNNM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrKNNM localCrossMutr.clear() allParametersPerfCrossMutrLRC = [] for dr in LRIDs: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[15]: LRPickPair = random.sample(LRIntIndex,2) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRC', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[15] for loop in range(setMaxLoopValue[15] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRC.append(localCrossMutr[0]) allParametersPerfCrossMutrLRC.append(localCrossMutr[1]) allParametersPerfCrossMutrLRC.append(localCrossMutr[2]) allParametersPerfCrossMutrLRC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRC countLR = 0 LRIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrLRM = [] for dr in LRIDs: if (int(re.findall('\d+', dr)[0]) >= greater): LRIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar)) else: LRIntIndex.append(int(re.findall('\d+', dr)[0])) while countLR < setMaxLoopValue[9]: LRPickPair = random.sample(LRIntIndex,1) pairDF = paramAllAlgs.iloc[LRPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'C'): randomNumber = random.randint(101, 1000) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['C'] == crossoverDF['C'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0]) & (paramAllAlgs['penalty'] == crossoverDF['penalty'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LRM', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[9] for loop in range(setMaxLoopValue[9] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrLRM.append(localCrossMutr[0]) allParametersPerfCrossMutrLRM.append(localCrossMutr[1]) allParametersPerfCrossMutrLRM.append(localCrossMutr[2]) allParametersPerfCrossMutrLRM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM localCrossMutr.clear() allParametersPerfCrossMutrMLPC = [] for dr in MLPIDs: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[14]: MLPPickPair = random.sample(MLPIntIndex,2) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPC', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[14] for loop in range(setMaxLoopValue[14] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPC.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPC countMLP = 0 MLPIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrMLPM = [] for dr in MLPIDs: if (int(re.findall('\d+', dr)[0]) >= greater): MLPIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*2)) else: MLPIntIndex.append(int(re.findall('\d+', dr)[0])) while countMLP < setMaxLoopValue[8]: MLPPickPair = random.sample(MLPIntIndex,1) pairDF = paramAllAlgs.iloc[MLPPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'hidden_layer_sizes'): randomNumber = (random.randint(10,60), random.randint(4,10)) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['hidden_layer_sizes'] == crossoverDF['hidden_layer_sizes'].iloc[0]) & (paramAllAlgs['alpha'] == crossoverDF['alpha'].iloc[0]) & (paramAllAlgs['tol'] == crossoverDF['tol'].iloc[0]) & (paramAllAlgs['max_iter'] == crossoverDF['max_iter'].iloc[0]) & (paramAllAlgs['activation'] == crossoverDF['activation'].iloc[0]) & (paramAllAlgs['solver'] == crossoverDF['solver'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = MLPClassifier(random_state=RANDOM_SEED) params = {'hidden_layer_sizes': [crossoverDF['hidden_layer_sizes'].iloc[0]], 'alpha': [crossoverDF['alpha'].iloc[0]], 'tol': [crossoverDF['tol'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'activation': [crossoverDF['activation'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countMLP localCrossMutr = crossoverMutation(XData, yData, clf, params, 'MLPM', AlgorithmsIDsEnd) countMLP += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[8] for loop in range(setMaxLoopValue[8] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrMLPM.append(localCrossMutr[0]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[1]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[2]) allParametersPerfCrossMutrMLPM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrMLPM localCrossMutr.clear() allParametersPerfCrossMutrRFC = [] for dr in RFIDs: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) while countRF < setMaxLoopValue[13]: RFPickPair = random.sample(RFIntIndex,2) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFC', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[13] for loop in range(setMaxLoopValue[13] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFC.append(localCrossMutr[0]) allParametersPerfCrossMutrRFC.append(localCrossMutr[1]) allParametersPerfCrossMutrRFC.append(localCrossMutr[2]) allParametersPerfCrossMutrRFC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFC countRF = 0 RFIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrRFM = [] for dr in RFIDs: if (int(re.findall('\d+', dr)[0]) >= greater): RFIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*3)) else: RFIntIndex.append(int(re.findall('\d+', dr)[0])) while countRF < setMaxLoopValue[7]: RFPickPair = random.sample(RFIntIndex,1) pairDF = paramAllAlgs.iloc[RFPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['max_depth'] == crossoverDF['max_depth'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'max_depth': [crossoverDF['max_depth'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countRF localCrossMutr = crossoverMutation(XData, yData, clf, params, 'RFM', AlgorithmsIDsEnd) countRF += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[7] for loop in range(setMaxLoopValue[7] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrRFM.append(localCrossMutr[0]) allParametersPerfCrossMutrRFM.append(localCrossMutr[1]) allParametersPerfCrossMutrRFM.append(localCrossMutr[2]) allParametersPerfCrossMutrRFM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrRFM localCrossMutr.clear() allParametersPerfCrossMutrGradBC = [] for dr in GradBIDs: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[12]: GradBPickPair = random.sample(GradBIntIndex,2) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] randomZeroOne = random.randint(0, 1) valuePerColumn = pairDF[column].iloc[randomZeroOne] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBC', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[12] for loop in range(setMaxLoopValue[12] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBC.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBC.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBC countGradB = 0 GradBIntIndex = [] localCrossMutr.clear() allParametersPerfCrossMutrGradBM = [] for dr in GradBIDs: if (int(re.findall('\d+', dr)[0]) >= greater): GradBIntIndex.append(int(re.findall('\d+', dr)[0])-(addKNN-randomSearchVar*4)) else: GradBIntIndex.append(int(re.findall('\d+', dr)[0])) while countGradB < setMaxLoopValue[6]: GradBPickPair = random.sample(GradBIntIndex,1) pairDF = paramAllAlgs.iloc[GradBPickPair] crossoverDF = pd.DataFrame() for column in pairDF: listData = [] if (column == 'n_estimators'): randomNumber = random.randint(100, 200) listData.append(randomNumber) crossoverDF[column] = listData else: valuePerColumn = pairDF[column].iloc[0] listData.append(valuePerColumn) crossoverDF[column] = listData if (((paramAllAlgs['n_estimators'] == crossoverDF['n_estimators'].iloc[0]) & (paramAllAlgs['loss'] == crossoverDF['loss'].iloc[0]) & (paramAllAlgs['learning_rate'] == crossoverDF['learning_rate'].iloc[0]) & (paramAllAlgs['subsample'] == crossoverDF['subsample'].iloc[0]) & (paramAllAlgs['criterion'] == crossoverDF['criterion'].iloc[0])).any()): crossoverDF = pd.DataFrame() else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': [crossoverDF['n_estimators'].iloc[0]], 'loss': [crossoverDF['loss'].iloc[0]], 'learning_rate': [crossoverDF['learning_rate'].iloc[0]], 'subsample': [crossoverDF['subsample'].iloc[0]], 'criterion': [crossoverDF['criterion'].iloc[0]]} AlgorithmsIDsEnd = countAllModels + countGradB localCrossMutr = crossoverMutation(XData, yData, clf, params, 'GradBM', AlgorithmsIDsEnd) countGradB += 1 crossoverDF = pd.DataFrame() countAllModels = countAllModels + setMaxLoopValue[6] for loop in range(setMaxLoopValue[6] - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) localCrossMutr[2] = pd.concat([localCrossMutr[2], localCrossMutr[(loop+1)*4+2]], ignore_index=True) localCrossMutr[3] = pd.concat([localCrossMutr[3], localCrossMutr[(loop+1)*4+3]], ignore_index=True) allParametersPerfCrossMutrGradBM.append(localCrossMutr[0]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[1]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[2]) allParametersPerfCrossMutrGradBM.append(localCrossMutr[3]) HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrGradBM localCrossMutr.clear() global allParametersPerformancePerModelEnsem allParametersPerformancePerModelEnsem = allParametersPerformancePerModel.copy() allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrLRM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrLRM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrLRM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrMLPM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrRFM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrRFM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrRFM[3]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) allParametersPerformancePerModelEnsem[17] = pd.concat([allParametersPerformancePerModelEnsem[17], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) allParametersPerformancePerModelEnsem[18] = pd.concat([allParametersPerformancePerModelEnsem[18], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBC[3]], ignore_index=True) allParametersPerformancePerModelEnsem[19] = pd.concat([allParametersPerformancePerModelEnsem[19], allParametersPerfCrossMutrGradBM[3]], ignore_index=True) allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM + allParametersPerfCrossMutrMLPC + allParametersPerfCrossMutrMLPM + allParametersPerfCrossMutrRFC + allParametersPerfCrossMutrRFM + allParametersPerfCrossMutrGradBC + allParametersPerfCrossMutrGradBM allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrLRC[0] + allParametersPerfCrossMutrLRM[0] allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) allParametersPerformancePerModel[8] = allParametersPerformancePerModel[8] + allParametersPerfCrossMutrMLPC[0] + allParametersPerfCrossMutrMLPM[0] allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPC[1]], ignore_index=True) allParametersPerformancePerModel[9] = pd.concat([allParametersPerformancePerModel[9], allParametersPerfCrossMutrMLPM[1]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPC[2]], ignore_index=True) allParametersPerformancePerModel[10] = pd.concat([allParametersPerformancePerModel[10], allParametersPerfCrossMutrMLPM[2]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPC[3]], ignore_index=True) allParametersPerformancePerModel[11] = pd.concat([allParametersPerformancePerModel[11], allParametersPerfCrossMutrMLPM[3]], ignore_index=True) allParametersPerformancePerModel[12] = allParametersPerformancePerModel[12] + allParametersPerfCrossMutrRFC[0] + allParametersPerfCrossMutrRFM[0] allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFC[1]], ignore_index=True) allParametersPerformancePerModel[13] = pd.concat([allParametersPerformancePerModel[13], allParametersPerfCrossMutrRFM[1]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFC[2]], ignore_index=True) allParametersPerformancePerModel[14] = pd.concat([allParametersPerformancePerModel[14], allParametersPerfCrossMutrRFM[2]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFC[3]], ignore_index=True) allParametersPerformancePerModel[15] = pd.concat([allParametersPerformancePerModel[15], allParametersPerfCrossMutrRFM[3]], ignore_index=True) allParametersPerformancePerModel[16] = allParametersPerformancePerModel[16] + allParametersPerfCrossMutrGradBC[0] + allParametersPerfCrossMutrGradBM[0] allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBC[1]], ignore_index=True) allParametersPerformancePerModel[17] = pd.concat([allParametersPerformancePerModel[17], allParametersPerfCrossMutrGradBM[1]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBC[2]], ignore_index=True) allParametersPerformancePerModel[18] = pd.concat([allParametersPerformancePerModel[18], allParametersPerfCrossMutrGradBM[2]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBC[3]], ignore_index=True) allParametersPerformancePerModel[19] = pd.concat([allParametersPerformancePerModel[19], allParametersPerfCrossMutrGradBM[3]], ignore_index=True) global stage1addKNN global stage1addLR global stage1addMLP global stage1addRF global stage1addGradB global stageTotalReached global randomSearch addKNN = addGradB addLR = addKNN + setMaxLoopValue[16] + setMaxLoopValue[10] addMLP = addLR + setMaxLoopValue[15] + setMaxLoopValue[9] addRF = addMLP + setMaxLoopValue[14] + setMaxLoopValue[8] addGradB = addRF + setMaxLoopValue[13] + setMaxLoopValue[7] addAllNew = setMaxLoopValue[16] + setMaxLoopValue[10] + setMaxLoopValue[15] + setMaxLoopValue[9] + setMaxLoopValue[14] + setMaxLoopValue[8] + setMaxLoopValue[13] + setMaxLoopValue[7] + setMaxLoopValue[12] + setMaxLoopValue[6] stage1addKNN = addKNN stage1addLR = addLR stage1addMLP = addMLP stage1addRF = addRF stage1addGradB = addGradB stageTotalReached = stageTotalReached + addAllNew return 'Everything Okay' def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): print(eachAlgor) search = GridSearchCV( estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities search.fit(XData, yData) # process the results cv_results = [] cv_results.append(search.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): number = AlgorithmsIDsEnd+i modelsIDs.append(eachAlgor+str(number)) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_macro','mean_test_recall_macro','mean_test_f1_macro','mean_test_roc_auc_ovo']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersLocal = parametersPerformancePerModel['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(index) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] perModelProb = [] resultsWeighted = [] resultsCorrCoef = [] resultsLogLoss = [] resultsLogLossFinal = [] # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) yPredictProb = cross_val_predict(clf, XData, yData, cv=crossValidation, method='predict_proba') yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='macro')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(5,'geometric_mean_score_macro',resultsWeighted) metrics.insert(6,'matthews_corrcoef',resultsCorrCoef) metrics.insert(7,'log_loss',resultsLogLossFinal) perModelProbPandas = pd.DataFrame(perModelProb) results.append(modelsIDs) results.append(parametersPerformancePerModel) results.append(metrics) results.append(perModelProbPandas) return results def PreprocessingIDsCM(): dicKNNC = allParametersPerfCrossMutr[0] dicKNNM = allParametersPerfCrossMutr[4] dicLRC = allParametersPerfCrossMutr[8] dicLRM = allParametersPerfCrossMutr[12] dicMLPC = allParametersPerfCrossMutr[16] dicMLPM = allParametersPerfCrossMutr[20] dicRFC = allParametersPerfCrossMutr[24] dicRFM = allParametersPerfCrossMutr[28] dicGradBC = allParametersPerfCrossMutr[32] dicGradBM = allParametersPerfCrossMutr[36] df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM + dicMLPC + dicMLPM + dicRFC + dicRFM + dicGradBC + dicGradBM return df_concatIDs def PreprocessingIDsCMSecond(): dicKNNCC = allParametersPerfCrossMutr[0] dicKNNCM = allParametersPerfCrossMutr[4] dicLRCC = allParametersPerfCrossMutr[8] dicLRCM = allParametersPerfCrossMutr[12] dicMLPCC = allParametersPerfCrossMutr[16] dicMLPCM = allParametersPerfCrossMutr[20] dicRFCC = allParametersPerfCrossMutr[24] dicRFCM = allParametersPerfCrossMutr[28] dicGradBCC = allParametersPerfCrossMutr[32] dicGradBCM = allParametersPerfCrossMutr[36] dicKNNMC = allParametersPerfCrossMutr[40] dicKNNMM = allParametersPerfCrossMutr[44] dicLRMC = allParametersPerfCrossMutr[48] dicLRMM = allParametersPerfCrossMutr[52] dicMLPMC = allParametersPerfCrossMutr[56] dicMLPMM = allParametersPerfCrossMutr[60] dicRFMC = allParametersPerfCrossMutr[64] dicRFMM = allParametersPerfCrossMutr[68] dicGradBMC = allParametersPerfCrossMutr[72] dicGradBMM = allParametersPerfCrossMutr[76] df_concatIDs = dicKNNCC + dicKNNCM + dicLRCC + dicLRCM + dicMLPCC + dicMLPCM + dicRFCC + dicRFCM + dicGradBCC + dicGradBCM + dicKNNMC + dicKNNMM + dicLRMC + dicLRMM + dicMLPMC + dicMLPMM + dicRFMC + dicRFMM + dicGradBMC + dicGradBMM return df_concatIDs def PreprocessingMetricsCM(): dicKNNC = allParametersPerfCrossMutr[2] dicKNNM = allParametersPerfCrossMutr[6] dicLRC = allParametersPerfCrossMutr[10] dicLRM = allParametersPerfCrossMutr[14] dicMLPC = allParametersPerfCrossMutr[18] dicMLPM = allParametersPerfCrossMutr[22] dicRFC = allParametersPerfCrossMutr[26] dicRFM = allParametersPerfCrossMutr[30] dicGradBC = allParametersPerfCrossMutr[34] dicGradBM = allParametersPerfCrossMutr[38] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) df_concatMetrics = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingMetricsCMSecond(): dicKNNCC = allParametersPerfCrossMutr[2] dicKNNCM = allParametersPerfCrossMutr[6] dicLRCC = allParametersPerfCrossMutr[10] dicLRCM = allParametersPerfCrossMutr[14] dicMLPCC = allParametersPerfCrossMutr[18] dicMLPCM = allParametersPerfCrossMutr[22] dicRFCC = allParametersPerfCrossMutr[26] dicRFCM = allParametersPerfCrossMutr[30] dicGradBCC = allParametersPerfCrossMutr[34] dicGradBCM = allParametersPerfCrossMutr[38] dicKNNMC = allParametersPerfCrossMutr[42] dicKNNMM = allParametersPerfCrossMutr[46] dicLRMC = allParametersPerfCrossMutr[50] dicLRMM = allParametersPerfCrossMutr[54] dicMLPMC = allParametersPerfCrossMutr[58] dicMLPMM = allParametersPerfCrossMutr[62] dicRFMC = allParametersPerfCrossMutr[66] dicRFMM = allParametersPerfCrossMutr[70] dicGradBMC = allParametersPerfCrossMutr[74] dicGradBMM = allParametersPerfCrossMutr[78] dfKNNCC = pd.DataFrame.from_dict(dicKNNCC) dfKNNCM = pd.DataFrame.from_dict(dicKNNCM) dfLRCC = pd.DataFrame.from_dict(dicLRCC) dfLRCM = pd.DataFrame.from_dict(dicLRCM) dfMLPCC = pd.DataFrame.from_dict(dicMLPCC) dfMLPCM = pd.DataFrame.from_dict(dicMLPCM) dfRFCC = pd.DataFrame.from_dict(dicRFCC) dfRFCM = pd.DataFrame.from_dict(dicRFCM) dfGradBCC = pd.DataFrame.from_dict(dicGradBCC) dfGradBCM = pd.DataFrame.from_dict(dicGradBCM) dfKNNMC = pd.DataFrame.from_dict(dicKNNMC) dfKNNMM = pd.DataFrame.from_dict(dicKNNMM) dfLRMC = pd.DataFrame.from_dict(dicLRMC) dfLRMM = pd.DataFrame.from_dict(dicLRMM) dfMLPMC = pd.DataFrame.from_dict(dicMLPMC) dfMLPMM = pd.DataFrame.from_dict(dicMLPMM) dfRFMC = pd.DataFrame.from_dict(dicRFMC) dfRFMM = pd.DataFrame.from_dict(dicRFMM) dfGradBMC = pd.DataFrame.from_dict(dicGradBMC) dfGradBMM = pd.DataFrame.from_dict(dicGradBMM) df_concatMetrics = pd.concat([dfKNNCC, dfKNNCM, dfLRCC, dfLRCM, dfMLPCC, dfMLPCM, dfRFCC, dfRFCM, dfGradBCC, dfGradBCM, dfKNNMC, dfKNNMM, dfLRMC, dfLRMM, dfMLPMC, dfMLPMM, dfRFMC, dfRFMM, dfGradBMC, dfGradBMM]) df_concatMetrics = df_concatMetrics.reset_index(drop=True) return df_concatMetrics def PreprocessingPredCM(): dicKNNC = allParametersPerfCrossMutr[3] dicKNNM = allParametersPerfCrossMutr[7] dicLRC = allParametersPerfCrossMutr[11] dicLRM = allParametersPerfCrossMutr[15] dicMLPC = allParametersPerfCrossMutr[19] dicMLPM = allParametersPerfCrossMutr[23] dicRFC = allParametersPerfCrossMutr[27] dicRFM = allParametersPerfCrossMutr[31] dicGradBC = allParametersPerfCrossMutr[35] dicGradBM = allParametersPerfCrossMutr[39] dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) dfKNN = pd.concat([dfKNNC, dfKNNM]) dfLR = pd.concat([dfLRC, dfLRM]) dfMLP = pd.concat([dfMLPC, dfMLPM]) dfRF = pd.concat([dfRFC, dfRFM]) dfGradB = pd.concat([dfGradBC, dfGradBM]) df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingPredCMSecond(): dicKNNCC = allParametersPerfCrossMutr[3] dicKNNCM = allParametersPerfCrossMutr[7] dicLRCC = allParametersPerfCrossMutr[11] dicLRCM = allParametersPerfCrossMutr[15] dicMLPCC = allParametersPerfCrossMutr[19] dicMLPCM = allParametersPerfCrossMutr[23] dicRFCC = allParametersPerfCrossMutr[27] dicRFCM = allParametersPerfCrossMutr[31] dicGradBCC = allParametersPerfCrossMutr[35] dicGradBCM = allParametersPerfCrossMutr[39] dicKNNMC = allParametersPerfCrossMutr[43] dicKNNMM = allParametersPerfCrossMutr[47] dicLRMC = allParametersPerfCrossMutr[51] dicLRMM = allParametersPerfCrossMutr[55] dicMLPMC = allParametersPerfCrossMutr[59] dicMLPMM = allParametersPerfCrossMutr[63] dicRFMC = allParametersPerfCrossMutr[67] dicRFMM = allParametersPerfCrossMutr[71] dicGradBMC = allParametersPerfCrossMutr[75] dicGradBMM = allParametersPerfCrossMutr[79] dfKNNCC = pd.DataFrame.from_dict(dicKNNCC) dfKNNCM = pd.DataFrame.from_dict(dicKNNCM) dfLRCC = pd.DataFrame.from_dict(dicLRCC) dfLRCM = pd.DataFrame.from_dict(dicLRCM) dfMLPCC = pd.DataFrame.from_dict(dicMLPCC) dfMLPCM = pd.DataFrame.from_dict(dicMLPCM) dfRFCC = pd.DataFrame.from_dict(dicRFCC) dfRFCM = pd.DataFrame.from_dict(dicRFCM) dfGradBCC = pd.DataFrame.from_dict(dicGradBCC) dfGradBCM = pd.DataFrame.from_dict(dicGradBCM) dfKNNMC = pd.DataFrame.from_dict(dicKNNMC) dfKNNMM = pd.DataFrame.from_dict(dicKNNMM) dfLRMC = pd.DataFrame.from_dict(dicLRMC) dfLRMM = pd.DataFrame.from_dict(dicLRMM) dfMLPMC = pd.DataFrame.from_dict(dicMLPMC) dfMLPMM = pd.DataFrame.from_dict(dicMLPMM) dfRFMC = pd.DataFrame.from_dict(dicRFMC) dfRFMM = pd.DataFrame.from_dict(dicRFMM) dfGradBMC = pd.DataFrame.from_dict(dicGradBMC) dfGradBMM = pd.DataFrame.from_dict(dicGradBMM) dfKNN = pd.concat([dfKNNCC, dfKNNCM, dfKNNMC, dfKNNMM]) dfLR = pd.concat([dfLRCC, dfLRCM, dfLRMC, dfLRMM]) dfMLP = pd.concat([dfMLPCC, dfMLPCM, dfMLPMC, dfMLPMM]) dfRF = pd.concat([dfRFCC, dfRFCM, dfRFMC, dfRFMM]) dfGradB = pd.concat([dfGradBCC, dfGradBCM, dfGradBMC, dfGradBMM]) df_concatProbs = pd.concat([dfKNNCC, dfKNNCM, dfLRCC, dfLRCM, dfMLPCC, dfMLPCM, dfRFCC, dfRFCM, dfGradBCC, dfGradBCM, dfKNNMC, dfKNNMM, dfLRMC, dfLRMM, dfMLPMC, dfMLPMM, dfRFMC, dfRFMM, dfGradBMC, dfGradBMM]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] def PreprocessingParamCM(): dicKNNC = allParametersPerfCrossMutr[1] dicKNNM = allParametersPerfCrossMutr[5] dicLRC = allParametersPerfCrossMutr[9] dicLRM = allParametersPerfCrossMutr[13] dicMLPC = allParametersPerfCrossMutr[17] dicMLPM = allParametersPerfCrossMutr[21] dicRFC = allParametersPerfCrossMutr[25] dicRFM = allParametersPerfCrossMutr[29] dicGradBC = allParametersPerfCrossMutr[33] dicGradBM = allParametersPerfCrossMutr[37] dicKNNC = dicKNNC['params'] dicKNNM = dicKNNM['params'] dicLRC = dicLRC['params'] dicLRM = dicLRM['params'] dicMLPC = dicMLPC['params'] dicMLPM = dicMLPM['params'] dicRFC = dicRFC['params'] dicRFM = dicRFM['params'] dicGradBC = dicGradBC['params'] dicGradBM = dicGradBM['params'] dicKNNC = {int(k):v for k,v in dicKNNC.items()} dicKNNM = {int(k):v for k,v in dicKNNM.items()} dicLRC = {int(k):v for k,v in dicLRC.items()} dicLRM = {int(k):v for k,v in dicLRM.items()} dicMLPC = {int(k):v for k,v in dicMLPC.items()} dicMLPM = {int(k):v for k,v in dicMLPM.items()} dicRFC = {int(k):v for k,v in dicRFC.items()} dicRFM = {int(k):v for k,v in dicRFM.items()} dicGradBC = {int(k):v for k,v in dicGradBC.items()} dicGradBM = {int(k):v for k,v in dicGradBM.items()} dfKNNC = pd.DataFrame.from_dict(dicKNNC) dfKNNM = pd.DataFrame.from_dict(dicKNNM) dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) dfMLPC = pd.DataFrame.from_dict(dicMLPC) dfMLPM = pd.DataFrame.from_dict(dicMLPM) dfRFC = pd.DataFrame.from_dict(dicRFC) dfRFM = pd.DataFrame.from_dict(dicRFM) dfGradBC = pd.DataFrame.from_dict(dicGradBC) dfGradBM = pd.DataFrame.from_dict(dicGradBM) dfKNNC = dfKNNC.T dfKNNM = dfKNNM.T dfLRC = dfLRC.T dfLRM = dfLRM.T dfMLPC = dfMLPC.T dfMLPM = dfMLPM.T dfRFC = dfRFC.T dfRFM = dfRFM.T dfGradBC = dfGradBC.T dfGradBM = dfGradBM.T df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM, dfMLPC, dfMLPM, dfRFC, dfRFM, dfGradBC, dfGradBM]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamCMSecond(): dicKNNCC = allParametersPerfCrossMutr[1] dicKNNCM = allParametersPerfCrossMutr[5] dicLRCC = allParametersPerfCrossMutr[9] dicLRCM = allParametersPerfCrossMutr[13] dicMLPCC = allParametersPerfCrossMutr[17] dicMLPCM = allParametersPerfCrossMutr[21] dicRFCC = allParametersPerfCrossMutr[25] dicRFCM = allParametersPerfCrossMutr[29] dicGradBCC = allParametersPerfCrossMutr[33] dicGradBCM = allParametersPerfCrossMutr[37] dicKNNMC = allParametersPerfCrossMutr[41] dicKNNMM = allParametersPerfCrossMutr[45] dicLRMC = allParametersPerfCrossMutr[49] dicLRMM = allParametersPerfCrossMutr[53] dicMLPMC = allParametersPerfCrossMutr[57] dicMLPMM = allParametersPerfCrossMutr[61] dicRFMC = allParametersPerfCrossMutr[65] dicRFMM = allParametersPerfCrossMutr[69] dicGradBMC = allParametersPerfCrossMutr[73] dicGradBMM = allParametersPerfCrossMutr[77] dicKNNCC = dicKNNCC['params'] dicKNNCM = dicKNNCM['params'] dicLRCC = dicLRCC['params'] dicLRCM = dicLRCM['params'] dicMLPCC = dicMLPCC['params'] dicMLPCM = dicMLPCM['params'] dicRFCC = dicRFCC['params'] dicRFCM = dicRFCM['params'] dicGradBCC = dicGradBCC['params'] dicGradBCM = dicGradBCM['params'] dicKNNMC = dicKNNMC['params'] dicKNNMM = dicKNNMM['params'] dicLRMC = dicLRMC['params'] dicLRMM = dicLRMM['params'] dicMLPMC = dicMLPMC['params'] dicMLPMM = dicMLPMM['params'] dicRFMC = dicRFMC['params'] dicRFMM = dicRFMM['params'] dicGradBMC = dicGradBMC['params'] dicGradBMM = dicGradBMM['params'] dicKNNCC = {int(k):v for k,v in dicKNNCC.items()} dicKNNCM = {int(k):v for k,v in dicKNNCM.items()} dicLRCC = {int(k):v for k,v in dicLRCC.items()} dicLRCM = {int(k):v for k,v in dicLRCM.items()} dicMLPCC = {int(k):v for k,v in dicMLPCC.items()} dicMLPCM = {int(k):v for k,v in dicMLPCM.items()} dicRFCC = {int(k):v for k,v in dicRFCC.items()} dicRFCM = {int(k):v for k,v in dicRFCM.items()} dicGradBCC = {int(k):v for k,v in dicGradBCC.items()} dicGradBCM = {int(k):v for k,v in dicGradBCM.items()} dicKNNMC = {int(k):v for k,v in dicKNNMC.items()} dicKNNMM = {int(k):v for k,v in dicKNNMM.items()} dicLRMC = {int(k):v for k,v in dicLRMC.items()} dicLRMM = {int(k):v for k,v in dicLRMM.items()} dicMLPMC = {int(k):v for k,v in dicMLPMC.items()} dicMLPMM = {int(k):v for k,v in dicMLPMM.items()} dicRFMC = {int(k):v for k,v in dicRFMC.items()} dicRFMM = {int(k):v for k,v in dicRFMM.items()} dicGradBMC = {int(k):v for k,v in dicGradBMC.items()} dicGradBMM = {int(k):v for k,v in dicGradBMM.items()} dfKNNCC = pd.DataFrame.from_dict(dicKNNCC) dfKNNCM = pd.DataFrame.from_dict(dicKNNCM) dfLRCC = pd.DataFrame.from_dict(dicLRCC) dfLRCM = pd.DataFrame.from_dict(dicLRCM) dfMLPCC = pd.DataFrame.from_dict(dicMLPCC) dfMLPCM = pd.DataFrame.from_dict(dicMLPCM) dfRFCC = pd.DataFrame.from_dict(dicRFCC) dfRFCM = pd.DataFrame.from_dict(dicRFCM) dfGradBCC = pd.DataFrame.from_dict(dicGradBCC) dfGradBCM = pd.DataFrame.from_dict(dicGradBCM) dfKNNMC = pd.DataFrame.from_dict(dicKNNMC) dfKNNMM = pd.DataFrame.from_dict(dicKNNMM) dfLRMC = pd.DataFrame.from_dict(dicLRMC) dfLRMM = pd.DataFrame.from_dict(dicLRMM) dfMLPMC = pd.DataFrame.from_dict(dicMLPMC) dfMLPMM = pd.DataFrame.from_dict(dicMLPMM) dfRFMC = pd.DataFrame.from_dict(dicRFMC) dfRFMM = pd.DataFrame.from_dict(dicRFMM) dfGradBMC = pd.DataFrame.from_dict(dicGradBMC) dfGradBMM = pd.DataFrame.from_dict(dicGradBMM) dfKNNCC = dfKNNCC.T dfKNNCM = dfKNNCM.T dfLRCC = dfLRCC.T dfLRCM = dfLRCM.T dfMLPCC = dfMLPCC.T dfMLPCM = dfMLPCM.T dfRFCC = dfRFCC.T dfRFCM = dfRFCM.T dfGradBCC = dfGradBCC.T dfGradBCM = dfGradBCM.T dfKNNMC = dfKNNMC.T dfKNNMM = dfKNNMM.T dfLRMC = dfLRMC.T dfLRMM = dfLRMM.T dfMLPMC = dfMLPMC.T dfMLPMM = dfMLPMM.T dfRFMC = dfRFMC.T dfRFMM = dfRFMM.T dfGradBMC = dfGradBMC.T dfGradBMM = dfGradBMM.T df_params = pd.concat([dfKNNCC, dfKNNCM, dfLRCC, dfLRCM, dfMLPCC, dfMLPCM, dfRFCC, dfRFCM, dfGradBCC, dfGradBCM, dfKNNMC, dfKNNMM, dfLRMC, dfLRMM, dfMLPMC, dfMLPMM, dfRFMC, dfRFMM, dfGradBMC, dfGradBMM]) df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSepCM(): dicKNNCC = allParametersPerfCrossMutr[1] dicKNNCM = allParametersPerfCrossMutr[5] dicLRCC = allParametersPerfCrossMutr[9] dicLRCM = allParametersPerfCrossMutr[13] dicMLPCC = allParametersPerfCrossMutr[17] dicMLPCM = allParametersPerfCrossMutr[21] dicRFCC = allParametersPerfCrossMutr[25] dicRFCM = allParametersPerfCrossMutr[29] dicGradBCC = allParametersPerfCrossMutr[33] dicGradBCM = allParametersPerfCrossMutr[37] dicKNNMC = allParametersPerfCrossMutr[41] dicKNNMM = allParametersPerfCrossMutr[45] dicLRMC = allParametersPerfCrossMutr[49] dicLRMM = allParametersPerfCrossMutr[53] dicMLPMC = allParametersPerfCrossMutr[57] dicMLPMM = allParametersPerfCrossMutr[61] dicRFMC = allParametersPerfCrossMutr[65] dicRFMM = allParametersPerfCrossMutr[69] dicGradBMC = allParametersPerfCrossMutr[73] dicGradBMM = allParametersPerfCrossMutr[77] dicKNNCC = dicKNNCC['params'] dicKNNCM = dicKNNCM['params'] dicLRCC = dicLRCC['params'] dicLRCM = dicLRCM['params'] dicMLPCC = dicMLPCC['params'] dicMLPCM = dicMLPCM['params'] dicRFCC = dicRFCC['params'] dicRFCM = dicRFCM['params'] dicGradBCC = dicGradBCC['params'] dicGradBCM = dicGradBCM['params'] dicKNNMC = dicKNNMC['params'] dicKNNMM = dicKNNMM['params'] dicLRMC = dicLRMC['params'] dicLRMM = dicLRMM['params'] dicMLPMC = dicMLPMC['params'] dicMLPMM = dicMLPMM['params'] dicRFMC = dicRFMC['params'] dicRFMM = dicRFMM['params'] dicGradBMC = dicGradBMC['params'] dicGradBMM = dicGradBMM['params'] dicKNNCC = {int(k):v for k,v in dicKNNCC.items()} dicKNNCM = {int(k):v for k,v in dicKNNCM.items()} dicLRCC = {int(k):v for k,v in dicLRCC.items()} dicLRCM = {int(k):v for k,v in dicLRCM.items()} dicMLPCC = {int(k):v for k,v in dicMLPCC.items()} dicMLPCM = {int(k):v for k,v in dicMLPCM.items()} dicRFCC = {int(k):v for k,v in dicRFCC.items()} dicRFCM = {int(k):v for k,v in dicRFCM.items()} dicGradBCC = {int(k):v for k,v in dicGradBCC.items()} dicGradBCM = {int(k):v for k,v in dicGradBCM.items()} dicKNNMC = {int(k):v for k,v in dicKNNMC.items()} dicKNNMM = {int(k):v for k,v in dicKNNMM.items()} dicLRMC = {int(k):v for k,v in dicLRMC.items()} dicLRMM = {int(k):v for k,v in dicLRMM.items()} dicMLPMC = {int(k):v for k,v in dicMLPMC.items()} dicMLPMM = {int(k):v for k,v in dicMLPMM.items()} dicRFMC = {int(k):v for k,v in dicRFMC.items()} dicRFMM = {int(k):v for k,v in dicRFMM.items()} dicGradBMC = {int(k):v for k,v in dicGradBMC.items()} dicGradBMM = {int(k):v for k,v in dicGradBMM.items()} dfKNNCC = pd.DataFrame.from_dict(dicKNNCC) dfKNNCM = pd.DataFrame.from_dict(dicKNNCM) dfLRCC = pd.DataFrame.from_dict(dicLRCC) dfLRCM = pd.DataFrame.from_dict(dicLRCM) dfMLPCC = pd.DataFrame.from_dict(dicMLPCC) dfMLPCM = pd.DataFrame.from_dict(dicMLPCM) dfRFCC = pd.DataFrame.from_dict(dicRFCC) dfRFCM = pd.DataFrame.from_dict(dicRFCM) dfGradBCC = pd.DataFrame.from_dict(dicGradBCC) dfGradBCM = pd.DataFrame.from_dict(dicGradBCM) dfKNNMC = pd.DataFrame.from_dict(dicKNNMC) dfKNNMM = pd.DataFrame.from_dict(dicKNNMM) dfLRMC = pd.DataFrame.from_dict(dicLRMC) dfLRMM = pd.DataFrame.from_dict(dicLRMM) dfMLPMC = pd.DataFrame.from_dict(dicMLPMC) dfMLPMM = pd.DataFrame.from_dict(dicMLPMM) dfRFMC = pd.DataFrame.from_dict(dicRFMC) dfRFMM = pd.DataFrame.from_dict(dicRFMM) dfGradBMC = pd.DataFrame.from_dict(dicGradBMC) dfGradBMM = pd.DataFrame.from_dict(dicGradBMM) dfKNNCC = dfKNNCC.T dfKNNCM = dfKNNCM.T dfLRCC = dfLRCC.T dfLRCM = dfLRCM.T dfMLPCC = dfMLPCC.T dfMLPCM = dfMLPCM.T dfRFCC = dfRFCC.T dfRFCM = dfRFCM.T dfGradBCC = dfGradBCC.T dfGradBCM = dfGradBCM.T dfKNNMC = dfKNNMC.T dfKNNMM = dfKNNMM.T dfLRMC = dfLRMC.T dfLRMM = dfLRMM.T dfMLPMC = dfMLPMC.T dfMLPMM = dfMLPMM.T dfRFMC = dfRFMC.T dfRFMM = dfRFMM.T dfGradBMC = dfGradBMC.T dfGradBMM = dfGradBMM.T return [dfKNNCC, dfKNNCM, dfLRCC, dfLRCM, dfMLPCC, dfMLPCM, dfRFCC, dfRFCM, dfGradBCC, dfGradBCM, dfKNNMC, dfKNNMM, dfLRMC, dfLRMM, dfMLPMC, dfMLPMM, dfRFMC, dfRFMM, dfGradBMC, dfGradBMM] def preProcsumPerMetricCM(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcsumPerMetricCMSecond(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetricsCMSecond() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSelCM(): loopThroughMetrics = PreprocessingMetricsCM() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def preProcMetricsAllAndSelCMSecond(): loopThroughMetrics = PreprocessingMetricsCMSecond() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_f1_macro']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 5): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 7): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotCrossMutate', methods=["GET", "POST"]) def SendToPlotCM(): while (len(DataResultsRaw) != DataRawLength): pass global CurStage if (CurStage == 1): PreProcessingInitial() response = { 'OverviewResultsCM': ResultsCM } else: PreProcessingSecond() response = { 'OverviewResultsCM': ResultsCMSecond } return jsonify(response) def PreProcessingInitial(): XModels = PreprocessingMetricsCM() global allParametersPerfCrossMutr global factors XModels = XModels.fillna(0) dropMetrics = [] for index, element in enumerate(factors): if (element == 0): dropMetrics.append(index) XModels.drop(XModels.columns[dropMetrics], axis=1, inplace=True) ModelSpaceMDSCM = FunMDS(XModels) ModelSpaceTSNECM = FunTsne(XModels) ModelSpaceTSNECM = ModelSpaceTSNECM.tolist() ModelSpaceUMAPCM = FunUMAP(XModels) PredictionProbSelCM = PreprocessingPredCM() CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSelCM) def PreProcessingSecond(): XModels = PreprocessingMetricsCMSecond() global factors XModels = XModels.fillna(0) dropMetrics = [] for index, element in enumerate(factors): if (element == 0): dropMetrics.append(index) XModels.drop(XModels.columns[dropMetrics], axis=1, inplace=True) ModelSpaceMDSCMSecond = FunMDS(XModels) ModelSpaceTSNECMSecond = FunTsne(XModels) ModelSpaceTSNECMSecond = ModelSpaceTSNECMSecond.tolist() ModelSpaceUMAPCMSecond = FunUMAP(XModels) PredictionProbSelCMSecond = PreprocessingPredCMSecond() CrossMutateResultsSecond(ModelSpaceMDSCMSecond,ModelSpaceTSNECMSecond,ModelSpaceUMAPCMSecond,PredictionProbSelCMSecond) def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,PredictionProbSelCM): global ResultsCM global AllTargets global names_labels global yDataSorted ResultsCM = [] global factors parametersGenCM = PreprocessingParamCM() metricsPerModelCM = preProcMetricsAllAndSelCM() sumPerClassifierCM = preProcsumPerMetricCM(factors) ModelsIDsCM = PreprocessingIDsCM() parametersGenPDGM = parametersGenCM.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() ResultsCM.append(json.dumps(ModelsIDsCM)) ResultsCM.append(json.dumps(sumPerClassifierCM)) ResultsCM.append(json.dumps(parametersGenPDGM)) ResultsCM.append(json.dumps(metricsPerModelCM)) ResultsCM.append(json.dumps(XDataJSONEntireSet)) ResultsCM.append(json.dumps(XDataColumns)) ResultsCM.append(json.dumps(yData)) ResultsCM.append(json.dumps(target_names)) ResultsCM.append(json.dumps(AllTargets)) ResultsCM.append(json.dumps(ModelSpaceMDSCM)) ResultsCM.append(json.dumps(ModelSpaceTSNECM)) ResultsCM.append(json.dumps(ModelSpaceUMAPCM)) ResultsCM.append(json.dumps(PredictionProbSelCM)) ResultsCM.append(json.dumps(names_labels)) ResultsCM.append(json.dumps(yDataSorted)) return ResultsCM def CrossMutateResultsSecond(ModelSpaceMDSCMSecond,ModelSpaceTSNECMSecond,ModelSpaceUMAPCMSecond,PredictionProbSelCMSecond): global ResultsCMSecond global AllTargets global names_labels global yDataSorted ResultsCMSecond = [] parametersGenCMSecond = PreprocessingParamCMSecond() metricsPerModelCMSecond = preProcMetricsAllAndSelCMSecond() sumPerClassifierCMSecond = preProcsumPerMetricCMSecond(factors) ModelsIDsCMSecond = PreprocessingIDsCMSecond() parametersGenPDGMSecond = parametersGenCMSecond.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataColumns = XData.columns.tolist() ResultsCMSecond.append(json.dumps(ModelsIDsCMSecond)) ResultsCMSecond.append(json.dumps(sumPerClassifierCMSecond)) ResultsCMSecond.append(json.dumps(parametersGenPDGMSecond)) ResultsCMSecond.append(json.dumps(metricsPerModelCMSecond)) ResultsCMSecond.append(json.dumps(XDataJSONEntireSet)) ResultsCMSecond.append(json.dumps(XDataColumns)) ResultsCMSecond.append(json.dumps(yData)) ResultsCMSecond.append(json.dumps(target_names)) ResultsCMSecond.append(json.dumps(AllTargets)) ResultsCMSecond.append(json.dumps(ModelSpaceMDSCMSecond)) ResultsCMSecond.append(json.dumps(ModelSpaceTSNECMSecond)) ResultsCMSecond.append(json.dumps(ModelSpaceUMAPCMSecond)) ResultsCMSecond.append(json.dumps(PredictionProbSelCMSecond)) ResultsCMSecond.append(json.dumps(names_labels)) ResultsCMSecond.append(json.dumps(yDataSorted)) return ResultsCMSecond def PreprocessingPredSel(SelectedIDs): global addKNN global addLR global addMLP global addRF global addGradB numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDs: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if ((items[0] == "KNN") | (items[0] == "KNNC") | (items[0] == "KNNM") | (items[0] == "KNNCC") | (items[0] == "KNNCM") | (items[0] == "KNNMC") | (items[0] == "KNNMM")): numberIDKNN.append(int(items[1]) - addKNN) elif ((items[0] == "LR") | (items[0] == "LRC") | (items[0] == "LRM") | (items[0] == "LRCC") | (items[0] == "LRCM") | (items[0] == "LRMC") | (items[0] == "LRMM")): numberIDLR.append(int(items[1]) - addLR) elif ((items[0] == "MLP") | (items[0] == "MLPC") | (items[0] == "MLPM") | (items[0] == "MLPCC") | (items[0] == "MLPCM") | (items[0] == "MLPMC") | (items[0] == "MLPMM")): numberIDMLP.append(int(items[1]) - addMLP) elif ((items[0] == "RF") | (items[0] == "RFC") | (items[0] == "RFM") | (items[0] == "RFCC") | (items[0] == "RFCM") | (items[0] == "RFMC") | (items[0] == "RFMM")): numberIDRF.append(int(items[1]) - addRF) else: numberIDGradB.append(int(items[1]) - addGradB) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfKNN = dfKNN.loc[numberIDKNN] dfKNN.index += addKNN dfLR = pd.DataFrame.from_dict(dicLR) dfLR = dfLR.loc[numberIDLR] dfLR.index += addLR dfMLP = pd.DataFrame.from_dict(dicMLP) dfMLP = dfMLP.loc[numberIDMLP] dfMLP.index += addMLP dfRF = pd.DataFrame.from_dict(dicRF) dfRF = dfRF.loc[numberIDRF] dfRF.index += addRF dfGradB = pd.DataFrame.from_dict(dicGradB) dfGradB = dfGradB.loc[numberIDGradB] dfGradB.index += addGradB df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDs', methods=["GET", "POST"]) def RetrieveSelIDsPredict(): global ResultsSelPred ResultsSelPred = [] RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelection = json.loads(RetrieveIDsSelection) RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs'] ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection) return 'Everything Okay' @app.route('/data/RetrievePredictions', methods=["GET", "POST"]) def SendPredictSel(): global ResultsSelPred response = { 'PredictSel': ResultsSelPred } return jsonify(response) def PreprocessingPredSelEnsem(SelectedIDsEnsem): numberIDKNN = [] numberIDLR = [] numberIDMLP = [] numberIDRF = [] numberIDGradB = [] for el in SelectedIDsEnsem: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if ((items[0] == "KNN") | (items[0] == "KNNC") | (items[0] == "KNNM") | (items[0] == "KNNCC") | (items[0] == "KNNCM") | (items[0] == "KNNMC") | (items[0] == "KNNMM")): numberIDKNN.append(int(items[1])) elif ((items[0] == "LR") | (items[0] == "LRC") | (items[0] == "LRM") | (items[0] == "LRCC") | (items[0] == "LRCM") | (items[0] == "LRMC") | (items[0] == "LRMM")): numberIDLR.append(int(items[1])) elif ((items[0] == "MLP") | (items[0] == "MLPC") | (items[0] == "MLPM") | (items[0] == "MLPCC") | (items[0] == "MLPCM") | (items[0] == "MLPMC") | (items[0] == "MLPMM")): numberIDMLP.append(int(items[1])) elif ((items[0] == "RF") | (items[0] == "RFC") | (items[0] == "RFM") | (items[0] == "RFCC") | (items[0] == "RFCM") | (items[0] == "RFMC") | (items[0] == "RFMM")): numberIDRF.append(int(items[1])) else: numberIDGradB.append(int(items[1])) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dicMLP = allParametersPerformancePerModel[11] dicRF = allParametersPerformancePerModel[15] dicGradB = allParametersPerformancePerModel[19] dfKNN = pd.DataFrame.from_dict(dicKNN) dfLR = pd.DataFrame.from_dict(dicLR) dfMLP = pd.DataFrame.from_dict(dicMLP) dfRF = pd.DataFrame.from_dict(dicRF) dfGradB = pd.DataFrame.from_dict(dicGradB) df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) df_concatProbs = df_concatProbs.reset_index(drop=True) dfKNN = df_concatProbs.loc[numberIDKNN] dfLR = df_concatProbs.loc[numberIDLR] dfMLP = df_concatProbs.loc[numberIDMLP] dfRF = df_concatProbs.loc[numberIDRF] dfGradB = df_concatProbs.loc[numberIDGradB] df_concatProbs = pd.DataFrame() df_concatProbs = df_concatProbs.iloc[0:0] df_concatProbs = pd.concat([dfKNN, dfLR, dfMLP, dfRF, dfGradB]) predictionsKNN = [] for column, content in dfKNN.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsKNN.append(el) predictionsLR = [] for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) predictionsMLP = [] for column, content in dfMLP.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsMLP.append(el) predictionsRF = [] for column, content in dfRF.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsRF.append(el) predictionsGradB = [] for column, content in dfGradB.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsGradB.append(el) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) global storeClass0 global storeClass1 global yDataSorted firstElKNN = [] firstElLR = [] firstElMLP = [] firstElRF = [] firstElGradB = [] firstElPredAv = [] lastElKNN = [] lastElLR = [] lastElMLP = [] lastElRF = [] lastElGradB = [] lastElPredAv = [] yDataSortedFirst = [] yDataSortedLast = [] for index, item in enumerate(yData): if (item == 0): if (len(predictionsKNN[index]) != 0): firstElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): firstElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): firstElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): firstElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): firstElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): firstElPredAv.append(predictions[index][item]*100) yDataSortedFirst.append(item) else: if (len(predictionsKNN[index]) != 0): lastElKNN.append(predictionsKNN[index][item]*100) if (len(predictionsLR[index]) != 0): lastElLR.append(predictionsLR[index][item]*100) if (len(predictionsMLP[index]) != 0): lastElMLP.append(predictionsMLP[index][item]*100) if (len(predictionsRF[index]) != 0): lastElRF.append(predictionsRF[index][item]*100) if (len(predictionsGradB[index]) != 0): lastElGradB.append(predictionsGradB[index][item]*100) if (len(predictions[index]) != 0): lastElPredAv.append(predictions[index][item]*100) yDataSortedLast.append(item) if (storeClass0 > 169 and storeClass1 > 169): yDataSortedFirst = [] yDataSortedLast = [] ResultsGatheredFirst = computeClusters(firstElPredAv,firstElKNN,firstElLR,firstElMLP,firstElRF,firstElGradB) ResultsGatheredLast = computeClusters(lastElPredAv,lastElKNN,lastElLR,lastElMLP,lastElRF,lastElGradB) for item in lastElPredAv: yDataSortedFirst.append(0) yDataSortedLast.append(0) predictions = ResultsGatheredFirst[0] + ResultsGatheredLast[0] predictionsKNN = ResultsGatheredFirst[1] + ResultsGatheredLast[1] predictionsLR = ResultsGatheredFirst[2] + ResultsGatheredLast[2] predictionsMLP = ResultsGatheredFirst[3] + ResultsGatheredLast[3] predictionsRF = ResultsGatheredFirst[4] + ResultsGatheredLast[4] predictionsGradB = ResultsGatheredFirst[5] + ResultsGatheredLast[5] yDataSorted = yDataSortedFirst + yDataSortedLast return [predictionsKNN, predictionsLR, predictionsMLP, predictionsRF, predictionsGradB, predictions] @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverSelIDsEnsem', methods=["GET", "POST"]) def RetrieveSelIDsPredictEnsem(): global ResultsSelPredEnsem ResultsSelPredEnsem = [] RetrieveIDsSelectionEnsem = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelectionEnsem = json.loads(RetrieveIDsSelectionEnsem) RetrieveIDsSelectionEnsem = RetrieveIDsSelectionEnsem['predictSelectionIDsCM'] ResultsSelPredEnsem = PreprocessingPredSelEnsem(RetrieveIDsSelectionEnsem) return 'Everything Okay' @app.route('/data/RetrievePredictionsEnsem', methods=["GET", "POST"]) def SendPredictSelEnsem(): global ResultsSelPredEnsem response = { 'PredictSelEnsem': ResultsSelPredEnsem } return jsonify(response) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"]) def RetrieveSelClassifiersID(): global EnsembleActive ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') #ComputeMetricsForSel(ClassifierIDsList) ClassifierIDCleaned = json.loads(ClassifierIDsList) ClassifierIDCleaned = ClassifierIDCleaned['ClassifiersList'] EnsembleActive = [] EnsembleActive = ClassifierIDCleaned.copy() EnsembleIDs() EnsembleModel(ClassifierIDsList, 1) return 'Everything Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRemoveFromEnsemble', methods=["GET", "POST"]) def RetrieveSelClassifiersIDandRemoveFromEnsemble(): global EnsembleActive ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') ClassifierIDsList = json.loads(ClassifierIDsList) ClassifierIDsListCleaned = ClassifierIDsList['ClassifiersList'] EnsembleActive = [] EnsembleActive = ClassifierIDsListCleaned.copy() return 'Everything Okay'