diff --git a/__pycache__/run.cpython-37.pyc b/__pycache__/run.cpython-37.pyc index c474586..af482ba 100644 Binary files a/__pycache__/run.cpython-37.pyc and b/__pycache__/run.cpython-37.pyc differ diff --git a/cachedir/joblib/run/randomSearch/0a7800f040057f3aab13a59ebd153437/output.pkl b/cachedir/joblib/run/randomSearch/0a7800f040057f3aab13a59ebd153437/output.pkl new file mode 100644 index 0000000..61b9590 Binary files /dev/null and b/cachedir/joblib/run/randomSearch/0a7800f040057f3aab13a59ebd153437/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/15c1a1c6505bfd383b2231a984466199/output.pkl b/cachedir/joblib/run/randomSearch/15c1a1c6505bfd383b2231a984466199/output.pkl deleted file mode 100644 index b7cea4b..0000000 Binary files a/cachedir/joblib/run/randomSearch/15c1a1c6505bfd383b2231a984466199/output.pkl and /dev/null differ diff --git a/cachedir/joblib/run/randomSearch/33864c0fe6e12968caff785cfea6870b/output.pkl b/cachedir/joblib/run/randomSearch/33864c0fe6e12968caff785cfea6870b/output.pkl new file mode 100644 index 0000000..4f07a2a Binary files /dev/null and b/cachedir/joblib/run/randomSearch/33864c0fe6e12968caff785cfea6870b/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/37316eae58a8c74b9165423658201b28/metadata.json b/cachedir/joblib/run/randomSearch/37316eae58a8c74b9165423658201b28/metadata.json deleted file mode 100644 index afc5f8a..0000000 --- a/cachedir/joblib/run/randomSearch/37316eae58a8c74b9165423658201b28/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 7.371565103530884, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='chebyshev',\n metric_params=None, n_jobs=None, n_neighbors=17, p=2,\n weights='uniform')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/02f4b76834d076f3b2e8a3a6d6a6d0ad/metadata.json b/cachedir/joblib/run/randomSearch/8dd8c905a5a57cf1d9b467f291dd14b2/metadata.json similarity index 69% rename from cachedir/joblib/run/randomSearch/02f4b76834d076f3b2e8a3a6d6a6d0ad/metadata.json rename to cachedir/joblib/run/randomSearch/8dd8c905a5a57cf1d9b467f291dd14b2/metadata.json index 3a4c4e6..50d1fc2 100644 --- a/cachedir/joblib/run/randomSearch/02f4b76834d076f3b2e8a3a6d6a6d0ad/metadata.json +++ b/cachedir/joblib/run/randomSearch/8dd8c905a5a57cf1d9b467f291dd14b2/metadata.json @@ -1 +1 @@ -{"duration": 25.273269653320312, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=21, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=450,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='sag', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file +{"duration": 24.977500915527344, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=51, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=250,\n multi_class='auto', n_jobs=None, penalty='l2',\n random_state=42, solver='newton-cg', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/8ee66eaa63ddb9f764dde4060234b1f9/metadata.json b/cachedir/joblib/run/randomSearch/8ee66eaa63ddb9f764dde4060234b1f9/metadata.json new file mode 100644 index 0000000..e4ff930 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/8ee66eaa63ddb9f764dde4060234b1f9/metadata.json @@ -0,0 +1 @@ +{"duration": 12.29799771308899, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n601 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n602 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n603 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n604 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n605 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='brute', leaf_size=30, metric='manhattan',\n metric_params=None, n_jobs=None, n_neighbors=73, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/9d85ea1f37edb91533a828737a6caa01/metadata.json b/cachedir/joblib/run/randomSearch/9d85ea1f37edb91533a828737a6caa01/metadata.json deleted file mode 100644 index c8b395d..0000000 --- a/cachedir/joblib/run/randomSearch/9d85ea1f37edb91533a828737a6caa01/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 12.543240070343018, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=82, p=2,\n weights='uniform')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/a4fb34c288b3df59f6e95b0829e85cf8/output.pkl b/cachedir/joblib/run/randomSearch/a4fb34c288b3df59f6e95b0829e85cf8/output.pkl new file mode 100644 index 0000000..e5b4085 Binary files /dev/null and b/cachedir/joblib/run/randomSearch/a4fb34c288b3df59f6e95b0829e85cf8/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/b05bc4dd718bb370a35dbc60bdff86aa/output.pkl b/cachedir/joblib/run/randomSearch/b05bc4dd718bb370a35dbc60bdff86aa/output.pkl deleted file mode 100644 index 3fef668..0000000 Binary files a/cachedir/joblib/run/randomSearch/b05bc4dd718bb370a35dbc60bdff86aa/output.pkl and /dev/null differ diff --git a/cachedir/joblib/run/randomSearch/b4f7364f1930f16773596d5d85ded668/output.pkl b/cachedir/joblib/run/randomSearch/b4f7364f1930f16773596d5d85ded668/output.pkl index 962a877..b221132 100644 Binary files a/cachedir/joblib/run/randomSearch/b4f7364f1930f16773596d5d85ded668/output.pkl and b/cachedir/joblib/run/randomSearch/b4f7364f1930f16773596d5d85ded668/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/b7a3520563829a2c45169ede4c18dce6/metadata.json b/cachedir/joblib/run/randomSearch/b7a3520563829a2c45169ede4c18dce6/metadata.json new file mode 100644 index 0000000..80f8fd7 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/b7a3520563829a2c45169ede4c18dce6/metadata.json @@ -0,0 +1 @@ +{"duration": 7.2485480308532715, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='chebyshev',\n metric_params=None, n_jobs=None, n_neighbors=26, p=2,\n weights='uniform')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/db2d0ed5e07bad06c380972b056d9c63/metadata.json b/cachedir/joblib/run/randomSearch/db2d0ed5e07bad06c380972b056d9c63/metadata.json new file mode 100644 index 0000000..2fd7ac6 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/db2d0ed5e07bad06c380972b056d9c63/metadata.json @@ -0,0 +1 @@ +{"duration": 31.870266675949097, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n601 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n602 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n603 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n604 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n605 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=48, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=100,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "200"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/e4dca276cc6a9475d2aee588523b478e/metadata.json b/cachedir/joblib/run/randomSearch/e4dca276cc6a9475d2aee588523b478e/metadata.json new file mode 100644 index 0000000..d6d64f6 --- /dev/null +++ b/cachedir/joblib/run/randomSearch/e4dca276cc6a9475d2aee588523b478e/metadata.json @@ -0,0 +1 @@ +{"duration": 9.726292848587036, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n601 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n602 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n603 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n604 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n605 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[606 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='kd_tree', leaf_size=30, metric='chebyshev',\n metric_params=None, n_jobs=None, n_neighbors=17, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/eb45ad56de8e367dade6cb77617a3d36/metadata.json b/cachedir/joblib/run/randomSearch/eb45ad56de8e367dade6cb77617a3d36/metadata.json deleted file mode 100644 index 5cc0868..0000000 --- a/cachedir/joblib/run/randomSearch/eb45ad56de8e367dade6cb77617a3d36/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 19.771310806274414, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=64, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=300,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='newton-cg', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], 'max_iter': [50, 100, 150, 200, 250, 300, 350, 400, 450], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "100"}} \ No newline at end of file diff --git a/cachedir/joblib/run/randomSearch/f7b8e3b85d52717cbc9c9dd04277903e/output.pkl b/cachedir/joblib/run/randomSearch/f7b8e3b85d52717cbc9c9dd04277903e/output.pkl index 79881a1..8825917 100644 Binary files a/cachedir/joblib/run/randomSearch/f7b8e3b85d52717cbc9c9dd04277903e/output.pkl and b/cachedir/joblib/run/randomSearch/f7b8e3b85d52717cbc9c9dd04277903e/output.pkl differ diff --git a/cachedir/joblib/run/randomSearch/func_code.py b/cachedir/joblib/run/randomSearch/func_code.py index 6d5febb..a205fc5 100644 --- a/cachedir/joblib/run/randomSearch/func_code.py +++ b/cachedir/joblib/run/randomSearch/func_code.py @@ -1,4 +1,4 @@ -# first line: 501 +# first line: 518 @memory.cache def randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): diff --git a/frontend/src/components/Ensemble.vue b/frontend/src/components/Ensemble.vue index a6e2fc0..830989b 100644 --- a/frontend/src/components/Ensemble.vue +++ b/frontend/src/components/Ensemble.vue @@ -89,7 +89,7 @@ export default { this.clean(parameters[i]) stringParameters.push(JSON.stringify(parameters[i]).replace(/,/gi, '
')) } - + // fix that! var classifiersInfoProcessing = [] for (let i = 0; i < modelId.length; i++) { if (i < 100) { diff --git a/frontend/src/components/HyperParameterSpace.vue b/frontend/src/components/HyperParameterSpace.vue index 8659a71..6662f55 100644 --- a/frontend/src/components/HyperParameterSpace.vue +++ b/frontend/src/components/HyperParameterSpace.vue @@ -73,7 +73,7 @@ export default { this.clean(parameters[i]) stringParameters.push(JSON.stringify(parameters[i]).replace(/,/gi, '
')) } - + // fix that! var classifiersInfoProcessing = [] for (let i = 0; i < modelId.length; i++) { if (i < 100) { diff --git a/frontend/src/components/Main.vue b/frontend/src/components/Main.vue index 43d33c5..1bce59b 100755 --- a/frontend/src/components/Main.vue +++ b/frontend/src/components/Main.vue @@ -323,7 +323,7 @@ export default Vue.extend({ } else { EventBus.$emit('emittedEventCallingCrossoverMutation', this.OverviewResults) EventBus.$emit('emittedEventCallingGridCrossoverMutation', this.OverviewResults) - EventBus.$emit('emittedEventCallingGridSelectionGridCrossoverMutation', this.OverviewResults) + EventBus.$emit('emittedEventCallingGridSelectionCrossoverMutation', this.OverviewResults) //this.getFinalResults() } }) @@ -349,7 +349,6 @@ export default Vue.extend({ EventBus.$emit('emittedEventCallingScatterPlot', this.OverviewResultsCM) EventBus.$emit('emittedEventCallingGrid', this.OverviewResultsCM) EventBus.$emit('emittedEventCallingGridSelection', this.OverviewResultsCM) - //this.getFinalResults() }) .catch(error => { console.log(error) diff --git a/frontend/src/components/Predictions.vue b/frontend/src/components/Predictions.vue index 5747f07..885297b 100644 --- a/frontend/src/components/Predictions.vue +++ b/frontend/src/components/Predictions.vue @@ -61,6 +61,7 @@ export default { var KNNPred = predictions[0] var LRPred = predictions[1] var PredAver = predictions[2] + console.log(PredAver) var dataAver = [] var dataAverGetResults = [] @@ -124,7 +125,7 @@ export default { } var classStore = [].concat.apply([], classArray); - + console.log(classStore) // === Set up canvas === // var width = 1200, diff --git a/frontend/src/components/PredictionsCM.vue b/frontend/src/components/PredictionsCM.vue index 3a40f80..5ca2474 100644 --- a/frontend/src/components/PredictionsCM.vue +++ b/frontend/src/components/PredictionsCM.vue @@ -431,8 +431,8 @@ export default { EventBus.$on('emittedEventCallingGridCrossoverMutation', data => { this.GetResultsAllCM = data; }) EventBus.$on('emittedEventCallingGridCrossoverMutation', this.Grid) - EventBus.$on('emittedEventCallingGridSelectionGridCrossoverMutation', data => { this.GetResultsSelectionCM = data; }) - EventBus.$on('emittedEventCallingGridSelectionGridCrossoverMutation', this.GridSelection) + EventBus.$on('emittedEventCallingGridSelectionCrossoverMutation', data => { this.GetResultsSelectionCM = data; }) + EventBus.$on('emittedEventCallingGridSelectionCrossoverMutation', this.GridSelection) EventBus.$on('SendSelectedPointsToServerEventCM', data => { this.predictSelectionCM = data; }) EventBus.$on('SendSelectedPointsToServerEventCM', this.GridSelection) diff --git a/run.py b/run.py index a23f385..b139c2c 100644 --- a/run.py +++ b/run.py @@ -76,6 +76,15 @@ def reset(): global yData yData = [] + global addKNN + addKNN = 0 + + global addLR + addLR = 100 + + global countAllModels + countAllModels = 0 + global XDataStored XDataStored = [] global yDataStored @@ -197,6 +206,12 @@ def retrieveFileName(): global detailsParams detailsParams = [] + global addKNN + addKNN = 0 + + global addLR + addLR = 100 + # Initializing models global RetrieveModelsList @@ -475,6 +490,7 @@ def retrieveModel(): global XData global yData global LRModelsCount + global countAllModels # loop through the algorithms global allParametersPerformancePerModel @@ -484,11 +500,12 @@ def retrieveModel(): if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 100)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} - AlgorithmsIDsEnd = KNNModelsCount + AlgorithmsIDsEnd = countAllModels else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(1,100,1)), 'max_iter': list(np.arange(50,500,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} - AlgorithmsIDsEnd = LRModelsCount + AlgorithmsIDsEnd = countAllModels + countAllModels = countAllModels + 100 allParametersPerformancePerModel = randomSearch(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd) HistoryPreservation = allParametersPerformancePerModel.copy() # call the function that sends the results to the frontend @@ -652,6 +669,7 @@ def PreprocessingParam(): dfLR = dfLR.T df_params = pd.concat([dfKNN, dfLR]) + df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSep(): @@ -788,7 +806,6 @@ def returnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionProbSel) Results.append(json.dumps(ModelSpaceTSNE)) Results.append(json.dumps(ModelSpaceUMAP)) Results.append(json.dumps(PredictionProbSel)) - print('mpike') return Results @@ -806,6 +823,9 @@ def CrossoverMutateFun(): global XData global yData global LRModelsCount + global addKNN + global addLR + global countAllModels # loop through the algorithms global allParametersPerfCrossMutr @@ -819,17 +839,16 @@ def CrossoverMutateFun(): countLR = 0 setMaxLoopValue = 5 paramAllAlgs = PreprocessingParam() + KNNIntIndex = [] LRIntIndex = [] localCrossMutr = [] allParametersPerfCrossMutrKNNC = [] - while countKNN < setMaxLoopValue: for dr in KNNIDs: KNNIntIndex.append(int(re.findall('\d+', dr)[0])) KNNPickPair = random.sample(KNNIntIndex,2) - pairDF = paramAllAlgs.iloc[KNNPickPair] crossoverDF = pd.DataFrame() for column in pairDF: @@ -843,11 +862,13 @@ def CrossoverMutateFun(): else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} - AlgorithmsIDsEnd = 200 + countKNN + AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() + countAllModels = countAllModels + 5 + for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) @@ -888,11 +909,13 @@ def CrossoverMutateFun(): else: clf = KNeighborsClassifier() params = {'n_neighbors': [crossoverDF['n_neighbors'].iloc[0]], 'metric': [crossoverDF['metric'].iloc[0]], 'algorithm': [crossoverDF['algorithm'].iloc[0]], 'weights': [crossoverDF['weights'].iloc[0]]} - AlgorithmsIDsEnd = 205 + countKNN + AlgorithmsIDsEnd = countAllModels + countKNN localCrossMutr = crossoverMutation(XData, yData, clf, params, 'KNN', AlgorithmsIDsEnd) countKNN += 1 crossoverDF = pd.DataFrame() + countAllModels = countAllModels + 5 + for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) @@ -927,11 +950,13 @@ def CrossoverMutateFun(): else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} - AlgorithmsIDsEnd = 210 + countLR + AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() + countAllModels = countAllModels + 5 + for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) @@ -972,11 +997,13 @@ def CrossoverMutateFun(): else: clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': [crossoverDF['C'].iloc[0]], 'max_iter': [crossoverDF['max_iter'].iloc[0]], 'solver': [crossoverDF['solver'].iloc[0]], 'penalty': [crossoverDF['penalty'].iloc[0]]} - AlgorithmsIDsEnd = 215 + countLR + AlgorithmsIDsEnd = countAllModels + countLR localCrossMutr = crossoverMutation(XData, yData, clf, params, 'LR', AlgorithmsIDsEnd) countLR += 1 crossoverDF = pd.DataFrame() + countAllModels = countAllModels + 5 + for loop in range(setMaxLoopValue - 1): localCrossMutr[0] = localCrossMutr[0] + localCrossMutr[(loop+1)*4] localCrossMutr[1] = pd.concat([localCrossMutr[1], localCrossMutr[(loop+1)*4+1]], ignore_index=True) @@ -990,15 +1017,15 @@ def CrossoverMutateFun(): HistoryPreservation = HistoryPreservation + allParametersPerfCrossMutrLRM + localCrossMutr.clear() + allParametersPerfCrossMutr = allParametersPerfCrossMutrKNNC + allParametersPerfCrossMutrKNNM + allParametersPerfCrossMutrLRC + allParametersPerfCrossMutrLRM - allParametersPerformancePerModel[0] = allParametersPerformancePerModel[0] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] - - allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) - allParametersPerformancePerModel[1] = pd.concat([allParametersPerformancePerModel[1], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) - - allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) - allParametersPerformancePerModel[2] = pd.concat([allParametersPerformancePerModel[2], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) + allParametersPerformancePerModel[4] = allParametersPerformancePerModel[4] + allParametersPerfCrossMutrKNNC[0] + allParametersPerfCrossMutrKNNM[0] + allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNC[1]], ignore_index=True) + allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrKNNM[1]], ignore_index=True) + allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNC[2]], ignore_index=True) + allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrKNNM[2]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNC[3]], ignore_index=True) allParametersPerformancePerModel[3] = pd.concat([allParametersPerformancePerModel[3], allParametersPerfCrossMutrKNNM[3]], ignore_index=True) @@ -1008,14 +1035,15 @@ def CrossoverMutateFun(): allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRC[1]], ignore_index=True) allParametersPerformancePerModel[5] = pd.concat([allParametersPerformancePerModel[5], allParametersPerfCrossMutrLRM[1]], ignore_index=True) - allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRC[2]], ignore_index=True) allParametersPerformancePerModel[6] = pd.concat([allParametersPerformancePerModel[6], allParametersPerfCrossMutrLRM[2]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRC[3]], ignore_index=True) allParametersPerformancePerModel[7] = pd.concat([allParametersPerformancePerModel[7], allParametersPerfCrossMutrLRM[3]], ignore_index=True) - print(allParametersPerformancePerModel[7]) + addKNN = addLR + + addLR = addLR + 10 # KNNIntIndex = [] # for dr in KNNIDs: @@ -1038,7 +1066,6 @@ def CrossoverMutateFun(): return 'Everything Okay' def crossoverMutation(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd): - search = GridSearchCV( estimator=clf, param_grid=params, cv=crossValidation, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) @@ -1134,7 +1161,6 @@ def PreprocessingIDsCM(): dicLRM = allParametersPerfCrossMutr[12] df_concatIDs = dicKNNC + dicKNNM + dicLRC + dicLRM - return df_concatIDs def PreprocessingMetricsCM(): @@ -1163,13 +1189,28 @@ def PreprocessingPredCM(): dfLRC = pd.DataFrame.from_dict(dicLRC) dfLRM = pd.DataFrame.from_dict(dicLRM) + dfKNN = pd.concat([dfKNNC, dfKNNM]) + + dfLR = pd.concat([dfLRC, dfLRM]) + df_concatProbs = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) + + predictionsKNN = [] + for column, content in dfKNN.items(): + el = [sum(x)/len(x) for x in zip(*content)] + predictionsKNN.append(el) + + predictionsLR = [] + for column, content in dfLR.items(): + el = [sum(x)/len(x) for x in zip(*content)] + predictionsLR.append(el) + predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) - return predictions + return [predictionsKNN, predictionsLR, predictions] def PreprocessingParamCM(): dicKNNC = allParametersPerfCrossMutr[1] @@ -1198,6 +1239,7 @@ def PreprocessingParamCM(): dfLRM = dfLRM.T df_params = pd.concat([dfKNNC, dfKNNM, dfLRC, dfLRM]) + df_params = df_params.reset_index(drop=True) return df_params def PreprocessingParamSepCM(): @@ -1326,30 +1368,37 @@ def CrossMutateResults(ModelSpaceMDSCM,ModelSpaceTSNECM,ModelSpaceUMAPCM,Predict ResultsCM.append(json.dumps(ModelSpaceUMAPCM)) ResultsCM.append(json.dumps(PredictionProbSel)) - return Results + return ResultsCM def PreprocessingPredSel(SelectedIDs): + global addKNN + global addLR + numberIDKNN = [] numberIDLR = [] + print(SelectedIDs) for el in SelectedIDs: match = re.match(r"([a-z]+)([0-9]+)", el, re.I) if match: items = match.groups() if (items[0] == 'KNN'): - numberIDKNN.append(int(items[1])) + numberIDKNN.append(int(items[1]) - addKNN) else: - numberIDLR.append(int(items[1]) - 100) - + numberIDLR.append(int(items[1]) - addLR) + print(numberIDKNN) dicKNN = allParametersPerformancePerModel[3] dicLR = allParametersPerformancePerModel[7] dfKNN = pd.DataFrame.from_dict(dicKNN) + print(dfKNN) dfKNN = dfKNN.loc[numberIDKNN] dfLR = pd.DataFrame.from_dict(dicLR) dfLR = dfLR.loc[numberIDLR] - dfLR.index += 100 + print(dfLR) + dfLR.index += addKNN df_concatProbs = pd.concat([dfKNN, dfLR]) + print(df_concatProbs) predictionsKNN = [] for column, content in dfKNN.items(): @@ -1360,6 +1409,7 @@ def PreprocessingPredSel(SelectedIDs): for column, content in dfLR.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsLR.append(el) + predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] @@ -1375,6 +1425,7 @@ def RetrieveSelIDsPredict(): RetrieveIDsSelection = request.get_data().decode('utf8').replace("'", '"') RetrieveIDsSelection = json.loads(RetrieveIDsSelection) RetrieveIDsSelection = RetrieveIDsSelection['predictSelectionIDs'] + ResultsSelPred = PreprocessingPredSel(RetrieveIDsSelection) return 'Everything Okay'