// transliterated from the python snippet here: // http://en.wikipedia.org/wiki/Lanczos_approximation var g = 7; var p = [ 0.99999999999980993, 676.5203681218851, -1259.1392167224028, 771.32342877765313, -176.61502916214059, 12.507343278686905, -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7 ]; var g_ln = 607/128; var p_ln = [ 0.99999999999999709182, 57.156235665862923517, -59.597960355475491248, 14.136097974741747174, -0.49191381609762019978, 0.33994649984811888699e-4, 0.46523628927048575665e-4, -0.98374475304879564677e-4, 0.15808870322491248884e-3, -0.21026444172410488319e-3, 0.21743961811521264320e-3, -0.16431810653676389022e-3, 0.84418223983852743293e-4, -0.26190838401581408670e-4, 0.36899182659531622704e-5 ]; // Spouge approximation (suitable for large arguments) function lngamma(z) { if(z < 0) return Number('0/0'); var x = p_ln[0]; for(var i = p_ln.length - 1; i > 0; --i) x += p_ln[i] / (z + i); var t = z + g_ln + 0.5; return .5*Math.log(2*Math.PI)+(z+.5)*Math.log(t)-t+Math.log(x)-Math.log(z); } module.exports = function gamma (z) { if (z < 0.5) { return Math.PI / (Math.sin(Math.PI * z) * gamma(1 - z)); } else if(z > 100) return Math.exp(lngamma(z)); else { z -= 1; var x = p[0]; for (var i = 1; i < g + 2; i++) { x += p[i] / (z + i); } var t = z + g + 0.5; return Math.sqrt(2 * Math.PI) * Math.pow(t, z + 0.5) * Math.exp(-t) * x ; } }; module.exports.log = lngamma;