# first line: 484 def GridSearchForParameters(clf, params): grid = GridSearchCV(estimator=clf, param_grid=params, scoring='accuracy', cv=crossValidation, n_jobs = -1) grid.fit(XData, yData) cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) number_of_classifiers = len(df_cv_results.iloc[0][0]) number_of_columns = len(df_cv_results.iloc[0]) df_cv_results_per_item = [] df_cv_results_per_row = [] for i in range(number_of_classifiers): df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) global allParametersPerformancePerModel parametersPerformancePerModel = df_cv_results_classifiers[['mean_test_score','params']] parametersPerformancePerModel = parametersPerformancePerModel.to_json() allParametersPerformancePerModel.append(parametersPerformancePerModel) return 'Everything is okay'