parent
							
								
									96bc447d49
								
							
						
					
					
						commit
						ef790026df
					
				| @ -0,0 +1,21 @@ | ||||
| MIT License | ||||
| 
 | ||||
| Copyright (c) 2020 Angelos Chatzimparmpas | ||||
| 
 | ||||
| Permission is hereby granted, free of charge, to any person obtaining a copy | ||||
| of this software and associated documentation files (the "Software"), to deal | ||||
| in the Software without restriction, including without limitation the rights | ||||
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||||
| copies of the Software, and to permit persons to whom the Software is | ||||
| furnished to do so, subject to the following conditions: | ||||
| 
 | ||||
| The above copyright notice and this permission notice shall be included in all | ||||
| copies or substantial portions of the Software. | ||||
| 
 | ||||
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||||
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||||
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||||
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||||
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||||
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||||
| SOFTWARE. | ||||
| @ -0,0 +1,71 @@ | ||||
| # StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics | ||||
| 
 | ||||
| This Git repository contains the code that accompanies the research paper "StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics". The details of the experiments and the research outcome are described in [the paper](https://doi.org/10.1109/TVCG.2020.3030352). | ||||
| 
 | ||||
| **Note:** StackGenVis is optimized to work better for standard resolutions (such as 1440p/QHD (Quad High Definition)). Any other resolution might need manual adjustment of your browser's zoom level to work properly. | ||||
| 
 | ||||
| **Note:** The tag `paper-version` matches the implementation at the time of the paper's publication. The current version might look significantly different depending on how much time has passed since then. | ||||
| 
 | ||||
| **Note:** As any other software, the code is not bug free. There might be limitations in the views and functionalities of the tool that could be addressed in a future code update. | ||||
| 
 | ||||
| # Data Sets # | ||||
| All publicly available data sets used in the paper are in the `data` folder, formatted as comma separated values (csv).  | ||||
| Most of them are available online from the [UCI Machine Learning Repository](http://archive.ics.uci.edu/ml/index.php): Iris and Heart Disease. We also used a collection of data related to sentiment/stance detection in texts. This data set is not included due to permission issues, since it was parsed from well-known social media platforms by our group. | ||||
| 
 | ||||
| # Requirements # | ||||
| For the backend: | ||||
| - [Python 3](https://www.python.org/downloads/) | ||||
| - [Flask](https://palletsprojects.com/p/flask/) | ||||
| - Other packages: `pymongo`, `numpy`, `scipy`, `scikit-learn`, `sk-dist`, `eli5`, and `pandas`. | ||||
| 
 | ||||
| You can install all the backend requirements with the following command: | ||||
| ``` | ||||
| pip install -r requirements.txt | ||||
| ``` | ||||
| 
 | ||||
| For the frontend: | ||||
| - [Node.js](https://nodejs.org/en/) | ||||
| - [D3.js](https://d3js.org/) | ||||
| - [Plotly.js](https://github.com/plotly/plotly.js/) | ||||
| 
 | ||||
| There is no need to install anything for the frontend, since all modules are in the repository. | ||||
| 
 | ||||
| # Usage # | ||||
| Below is an example of how you can get StackGenVis running using Python for both frontend and backend. The frontend is written in JavaScript/HTML, so it could be hosted in any other web server of your preference. The only hard requirement (currently) is that both frontend and backend must be running on the same machine.  | ||||
| ``` | ||||
| # first terminal: hosting the visualization side (client) | ||||
| # with Node.js | ||||
| cd frontend | ||||
| npm run dev | ||||
| ``` | ||||
| 
 | ||||
| ``` | ||||
| # second terminal: hosting the computational side (server) | ||||
| FLASK_APP=run.py flask run | ||||
| 
 | ||||
| # (optional) recommendation: use insertMongo script to add a data set in Mongo database | ||||
| # for Python3 | ||||
| python3 insertMongo.py | ||||
| ``` | ||||
| 
 | ||||
| Then, open your browser and point it to `localhost:8080`. We recommend using an up-to-date version of Google Chrome. | ||||
| 
 | ||||
| # Hyper-Parameters per Algorithm # | ||||
| **Base classifiers:** | ||||
| - **K-Nearest Neighbor:** {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} | ||||
| - **Support Vector Machine:** {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} | ||||
| - **Gaussian Naive Bayes:** {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} | ||||
| - **Multilayer Perceptron:** {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} | ||||
| - **Logistic Regression:** {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} | ||||
| - **Linear Discriminant Analysis:** {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} | ||||
| - **Quadratic Discriminant Analysis:** {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} | ||||
| - **Random Forests:** {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} | ||||
| - **Extra Trees:** {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} | ||||
| - **Adaptive Boosting:** {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']}  | ||||
| - **Gradient Boosting:** {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} | ||||
| 
 | ||||
| **Meta-learner**:  | ||||
| - **Logistic Regression** with the default Sklearn hyper-parameters. By that time, the core hyper-parameter tuples were: C=1.0, max_iter=100, solver='lbfgs', and penalty='l2'. | ||||
| 
 | ||||
| # Corresponding Author # | ||||
| For any questions with regard to the implementation or the paper, feel free to contact [Angelos Chatzimparmpas](mailto:angelos.chatzimparmpas@lnu.se). | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 394.63206577301025, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "SVC(C=4.39, kernel='sigmoid', probability=True, random_state=42)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576", "toggle": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 59.80266284942627, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "ExtraTreesClassifier(criterion='entropy', n_estimators=139, random_state=42)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606", "toggle": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 56.87974810600281, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=1.925, max_iter=200, penalty='none', random_state=42,\n                   solver='saga')", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356", "toggle": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 7.335093975067139, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LinearDiscriminantAnalysis(shrinkage=0.99, solver='eigen')", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996", "toggle": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 74.32207775115967, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(criterion='entropy', n_estimators=139, random_state=42)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446", "toggle": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 30.043955087661743, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='ball_tree', n_neighbors=24, weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "toggle": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 42.04622173309326, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, max_iter=100, random_state=42,\n              solver='sgd', tol=0.00081)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236", "toggle": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 8.6388258934021, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "QuadraticDiscriminantAnalysis(reg_param=0.98, tol=0.00081)", "params": "{'reg_param': [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7000000000000001, 0.72, 0.74, 0.76, 0.78, 0.8, 0.8200000000000001, 0.84, 0.86, 0.88, 0.9, 0.92, 0.9400000000000001, 0.96, 0.98], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196", "toggle": "0"}} | ||||
| @ -0,0 +1 @@ | ||||
| {"duration": 83.4008150100708, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(criterion='mae', learning_rate=0.12,\n                           n_estimators=114, random_state=42)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926", "toggle": "0"}} | ||||
									
										Binary file not shown.
									
								
							
						| @ -0,0 +1 @@ | ||||
| {"duration": 42.84825801849365, "input_args": {"XData": "     Fbs  Slope  Trestbps  Exang  Thalach  Age  Chol  Sex  Oldpeak  Restecg  Cp  Ca  Thal\n0      1      0       145      0      150   63   233    1      2.3        0   3   0     1\n1      0      0       130      0      187   37   250    1      3.5        1   2   0     2\n2      0      2       130      0      172   41   204    0      1.4        0   1   0     2\n3      0      2       120      0      178   56   236    1      0.8        1   1   0     2\n4      0      2       120      1      163   57   354    0      0.6        1   0   0     2\n..   ...    ...       ...    ...      ...  ...   ...  ...      ...      ...  ..  ..   ...\n298    0      1       140      1      123   57   241    0      0.2        1   0   0     3\n299    0      1       110      0      132   45   264    1      1.2        1   3   0     3\n300    1      1       144      0      141   68   193    1      3.4        1   0   2     3\n301    0      1       130      1      115   57   131    1      1.2        1   0   1     3\n302    0      1       130      0      174   57   236    0      0.0        0   1   1     2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "AdaBoostClassifier(algorithm='SAMME', learning_rate=1.2, n_estimators=79,\n                   random_state=42)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766", "toggle": "0"}} | ||||
									
										
											File diff suppressed because one or more lines are too long
										
									
								
							
						
					Loading…
					
					
				
		Reference in new issue