parent b0c55e2885
commit b1e08fb7b7
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. 2
      cachedir/joblib/run/GridSearchForModels/03316dae023356b400b64061e59b4761/metadata.json
  3. BIN
      cachedir/joblib/run/GridSearchForModels/14b7a6af511f576047b7a4433376c746/output.pkl
  4. 2
      cachedir/joblib/run/GridSearchForModels/1508132ed6be760ee3207f8b88753990/metadata.json
  5. BIN
      cachedir/joblib/run/GridSearchForModels/173781222c1a10e0c1c932908218f2f0/output.pkl
  6. BIN
      cachedir/joblib/run/GridSearchForModels/1fe55cc0b30f8f663d1bc8b0b49c1cac/output.pkl
  7. 1
      cachedir/joblib/run/GridSearchForModels/26953ce9acf4a0090b9c0a8938c52a7b/metadata.json
  8. BIN
      cachedir/joblib/run/GridSearchForModels/2c4edd3fe62fd40568ca7f7561419075/output.pkl
  9. 2
      cachedir/joblib/run/GridSearchForModels/33a4787f36e7786c67ea274589dbfcc6/metadata.json
  10. 2
      cachedir/joblib/run/GridSearchForModels/6373a10bde6134317227151d777f90b0/metadata.json
  11. 1
      cachedir/joblib/run/GridSearchForModels/638e82274ec062236282bd10dc4c7c62/metadata.json
  12. BIN
      cachedir/joblib/run/GridSearchForModels/82f223a869481609fe37b291b6e15bc2/output.pkl
  13. BIN
      cachedir/joblib/run/GridSearchForModels/836902d529892c54aae1d4228d3c846f/output.pkl
  14. 2
      cachedir/joblib/run/GridSearchForModels/9aa930c370944914b87b9f6e9d12113f/metadata.json
  15. 1
      cachedir/joblib/run/GridSearchForModels/a241c963f2aeaa7445819bdd5824462f/metadata.json
  16. 2
      cachedir/joblib/run/GridSearchForModels/a29668b3657493d860b5d05c422ab577/metadata.json
  17. 2
      cachedir/joblib/run/GridSearchForModels/a46dcd4e232a8dcae4536a2e2da671aa/metadata.json
  18. 1
      cachedir/joblib/run/GridSearchForModels/a7e6835baf6490bf5083ce8b2429aaa8/metadata.json
  19. BIN
      cachedir/joblib/run/GridSearchForModels/a8cc5caea6831da1d9820dd1a74d5c71/output.pkl
  20. BIN
      cachedir/joblib/run/GridSearchForModels/aaf8008b46bc250a1ce9f54973d7ef9a/output.pkl
  21. 2
      cachedir/joblib/run/GridSearchForModels/ab217966ac94ecfcb1f16130f136aadd/metadata.json
  22. BIN
      cachedir/joblib/run/GridSearchForModels/ab221a8a839cf8aa754a8871de928b9f/output.pkl
  23. 2
      cachedir/joblib/run/GridSearchForModels/abcb3eec64dd8c6498d463980055e83b/metadata.json
  24. BIN
      cachedir/joblib/run/GridSearchForModels/cf15d7acca337b9036c117dda0a7233d/output.pkl
  25. BIN
      cachedir/joblib/run/GridSearchForModels/db7bcaa025115a8c68aea12b37d63eed/output.pkl
  26. 3
      cachedir/joblib/run/GridSearchForModels/func_code.py
  27. 33
      frontend/src/components/AlgorithmHyperParam.vue
  28. 37
      frontend/src/components/Algorithms.vue
  29. 1
      run.py

Binary file not shown.

@ -1 +1 @@
{"duration": 58.06527900695801, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}}
{"duration": 50.60136699676514, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=50, store_covariance=False,\n tol=0.00081)", "params": "{'reg_param': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196"}}

@ -1 +1 @@
{"duration": 240.78257203102112, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}}
{"duration": 219.70271110534668, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=None, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356"}}

@ -1 +0,0 @@
{"duration": 496.23155188560486, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}}

@ -1 +1 @@
{"duration": 613.0237910747528, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}}
{"duration": 554.8381459712982, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606"}}

@ -1 +1 @@
{"duration": 814.1466150283813, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}}
{"duration": 863.4842360019684, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=None, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926"}}

@ -1 +0,0 @@
{"duration": 472.87897777557373, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}}

@ -1 +1 @@
{"duration": 168.97627997398376, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}}
{"duration": 158.92655205726624, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=None, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236"}}

@ -0,0 +1 @@
{"duration": 483.94886302948, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576"}}

@ -1 +1 @@
{"duration": 744.9404788017273, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}}
{"duration": 710.1713180541992, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446"}}

@ -1 +1 @@
{"duration": 50.576420068740845, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}}
{"duration": 43.934420108795166, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996"}}

@ -0,0 +1 @@
{"duration": 429.9728858470917, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=None)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766"}}

@ -1 +1 @@
{"duration": 347.06651639938354, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}}
{"duration": 319.8098211288452, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0"}}

File diff suppressed because one or more lines are too long

@ -1,7 +1,6 @@
# first line: 506
# first line: 504
@memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
print('test')
# instantiate spark session
spark = (
SparkSession

@ -63,6 +63,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j]))
if (sumKNN <= 0) {
sumKNN = 0
}
McKNN.push((sumKNN/divide)*100)
}
var McSVC = []
@ -74,6 +77,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j]))
if (sumSVC <= 0) {
sumSVC = 0
}
McSVC.push((sumSVC/divide)*100)
}
var McGausNB = []
@ -85,6 +91,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j]))
if (sumGausNB <= 0) {
sumGausNB = 0
}
McGausNB.push((sumGausNB/divide)*100)
}
var McMLP = []
@ -96,6 +105,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j]))
if (sumMLP <= 0) {
sumMLP = 0
}
McMLP.push((sumMLP/divide)*100)
}
var McLR = []
@ -107,6 +119,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j]))
if (sumLR <= 0) {
sumLR = 0
}
McLR.push((sumLR/divide)*100)
}
var McLDA = []
@ -118,6 +133,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j]))
if (sumLR <= 0) {
sumLR = 0
}
McLDA.push((sumLDA/divide)*100)
}
var McQDA = []
@ -129,6 +147,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j]))
if (sumQDA <= 0) {
sumQDA = 0
}
McQDA.push((sumQDA/divide)*100)
}
var McRF = []
@ -140,6 +161,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j]))
if (sumRF <= 0) {
sumRF = 0
}
McRF.push((sumRF/divide)*100)
}
var McExtraT = []
@ -151,6 +175,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j]))
if (sumExtraT <= 0) {
sumExtraT = 0
}
McExtraT.push((sumExtraT/divide)*100)
}
var McAdaB = []
@ -162,6 +189,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgAdaB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j]))
if (sumAdaB <= 0) {
sumAdaB = 0
}
McAdaB.push((sumAdaB/divide)*100)
}
var McGradB = []
@ -173,6 +203,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j]))
if (sumGradB <= 0) {
sumGradB = 0
}
McGradB.push((sumGradB/divide)*100)
}

@ -85,6 +85,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgKNN['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgKNN['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgKNN['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgKNN['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgKNN['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgKNN['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgKNN['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgKNN['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgKNN['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgKNN['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgKNN['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgKNN['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgKNN['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgKNN['log_loss'])[j]))
if (sumKNN <= 0) {
sumKNN = 0
}
McKNN.push((sumKNN/divide)*100)
}
var McSVC = []
@ -96,6 +99,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgSVC['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgSVC['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgSVC['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgSVC['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgSVC['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgSVC['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgSVC['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgSVC['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgSVC['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgSVC['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgSVC['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgSVC['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgSVC['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgSVC['log_loss'])[j]))
if (sumSVC <= 0) {
sumSVC = 0
}
McSVC.push((sumSVC/divide)*100)
}
var McGausNB = []
@ -107,6 +113,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGausNB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGausNB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGausNB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGausNB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGausNB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGausNB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGausNB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGausNB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGausNB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGausNB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGausNB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGausNB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGausNB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGausNB['log_loss'])[j]))
if (sumGausNB <= 0) {
sumGausNB = 0
}
McGausNB.push((sumGausNB/divide)*100)
}
var McMLP = []
@ -118,7 +127,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgMLP['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgMLP['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgMLP['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgMLP['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgMLP['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgMLP['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgMLP['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgMLP['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgMLP['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgMLP['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgMLP['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgMLP['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgMLP['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgMLP['log_loss'])[j]))
McMLP.push((sumMLP/divide)*100)
if (sumMLP <= 0) {
sumMLP = 0
}
McMLP.push((sumMLP/divide)*100)
}
var McLR = []
const performanceAlgLR = JSON.parse(this.PerformanceAllModels[38])
@ -129,7 +141,10 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLR['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLR['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLR['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLR['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLR['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLR['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLR['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLR['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLR['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLR['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLR['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLR['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLR['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLR['log_loss'])[j]))
McLR.push((sumLR/divide)*100)
if (sumLR <= 0) {
sumLR = 0
}
McLR.push((sumLR/divide)*100)
}
var McLDA = []
const performanceAlgLDA = JSON.parse(this.PerformanceAllModels[46])
@ -140,6 +155,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgLDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgLDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgLDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgLDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgLDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgLDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgLDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgLDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgLDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgLDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgLDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgLDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgLDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgLDA['log_loss'])[j]))
if (sumLDA <= 0) {
sumLDA = 0
}
McLDA.push((sumLDA/divide)*100)
}
var McQDA = []
@ -151,6 +169,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgQDA['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgQDA['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgQDA['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgQDA['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgQDA['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgQDA['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgQDA['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgQDA['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgQDA['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgQDA['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgQDA['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgQDA['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgQDA['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgQDA['log_loss'])[j]))
if (sumQDA <= 0) {
sumQDA = 0
}
McQDA.push((sumQDA/divide)*100)
}
var McRF = []
@ -162,6 +183,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgRF['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgRF['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgRF['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgRF['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgRF['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgRF['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgRF['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgRF['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgRF['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgRF['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgRF['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgRF['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgRF['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgRF['log_loss'])[j]))
if (sumRF <= 0) {
sumRF = 0
}
McRF.push((sumRF/divide)*100)
}
var McExtraT = []
@ -173,6 +197,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgExtraT['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgExtraT['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgExtraT['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgExtraT['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgExtraT['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgExtraT['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgExtraT['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgExtraT['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgExtraT['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgExtraT['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgExtraT['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgExtraT['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgExtraT['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgExtraT['log_loss'])[j]))
if (sumExtraT <= 0) {
sumExtraT = 0
}
McExtraT.push((sumExtraT/divide)*100)
}
var McAdaB = []
@ -184,6 +211,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgAdaB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgAdaB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgAdaB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgAdaB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgAdaB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgAdaB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgAdaB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgAdaB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgAdaB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgAdaB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgAdaB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgAdaB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgAdaB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgAdaB['log_loss'])[j]))
if (sumAdaB <= 0) {
sumAdaB = 0
}
McAdaB.push((sumAdaB/divide)*100)
}
var McGradB = []
@ -195,6 +225,9 @@ export default {
+ (factorsLocal[10] * Object.values(performanceAlgGradB['mean_test_recall_macro'])[j]) + (factorsLocal[11] * Object.values(performanceAlgGradB['mean_test_recall_weighted'])[j]) + (factorsLocal[12] * Object.values(performanceAlgGradB['f5_micro'])[j]) + (factorsLocal[13] * Object.values(performanceAlgGradB['f5_macro'])[j]) + (factorsLocal[14] * Object.values(performanceAlgGradB['f5_weighted'])[j]) + (factorsLocal[15] * Object.values(performanceAlgGradB['f1_micro'])[j])
+ (factorsLocal[16] * Object.values(performanceAlgGradB['f1_macro'])[j]) + (factorsLocal[17] * Object.values(performanceAlgGradB['f1_weighted'])[j]) + (factorsLocal[18] * Object.values(performanceAlgGradB['f2_micro'])[j]) + (factorsLocal[19] * Object.values(performanceAlgGradB['f2_macro'])[j]) + (factorsLocal[20] * Object.values(performanceAlgGradB['f2_weighted'])[j]) + (factorsLocal[21] * Object.values(performanceAlgGradB['matthews_corrcoef'])[j])
+ (factorsLocal[22] * Object.values(performanceAlgGradB['mean_test_roc_auc_ovo_weighted'])[j]) + (factorsLocal[23] * (1 - Object.values(performanceAlgGradB['log_loss'])[j]))
if (sumGradB <= 0) {
sumGradB = 0
}
McGradB.push((sumGradB/divide)*100)
}

@ -503,7 +503,6 @@ memory = Memory(location, verbose=0)
# calculating for all algorithms and models the performance and other results
@memory.cache
def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd):
print('test')
# instantiate spark session
spark = (
SparkSession

Loading…
Cancel
Save