fixed data wrangling

parent 2f312728e3
commit 30c79dd9f8
  1. BIN
      __pycache__/run.cpython-37.pyc
  2. 1
      cachedir/joblib/run/GridSearchForModels/0c5f8a1f4bea8be6ae4682e53eda9c9a/metadata.json
  3. BIN
      cachedir/joblib/run/GridSearchForModels/2f69ba23eb822696a3dd502d57a69769/output.pkl
  4. BIN
      cachedir/joblib/run/GridSearchForModels/443876fb4ee9a745a5e0263d22d18b6c/output.pkl
  5. BIN
      cachedir/joblib/run/GridSearchForModels/47d9815571b6615686b51643ff74edde/output.pkl
  6. BIN
      cachedir/joblib/run/GridSearchForModels/6af4a60c3ab79f2a59a2c852d99a7740/output.pkl
  7. 1
      cachedir/joblib/run/GridSearchForModels/7987784bb00482e6d734e7418e8e7825/metadata.json
  8. 1
      cachedir/joblib/run/GridSearchForModels/8100570ad09c6069159af9f71b0cbc3f/metadata.json
  9. 1
      cachedir/joblib/run/GridSearchForModels/84c9e65e096b72223ec9394ef6c77677/metadata.json
  10. 1
      cachedir/joblib/run/GridSearchForModels/8eb6d31b2f7dfdeafa1c9fbf54862bb3/metadata.json
  11. BIN
      cachedir/joblib/run/GridSearchForModels/8fb98ea4bff0c958c4784d68664d2f05/output.pkl
  12. 1
      cachedir/joblib/run/GridSearchForModels/90003ee6cd1c752ef075aa0a52f23492/metadata.json
  13. 1
      cachedir/joblib/run/GridSearchForModels/90f4ec7056539ba8f1ae91d2ce378613/metadata.json
  14. 1
      cachedir/joblib/run/GridSearchForModels/9147dc03a27d188e71203f91522c7d50/metadata.json
  15. BIN
      cachedir/joblib/run/GridSearchForModels/9484a1ead07b43a733fa1662bd133fff/output.pkl
  16. BIN
      cachedir/joblib/run/GridSearchForModels/b34a65dcd2975452d75ecd23e9009e6c/output.pkl
  17. BIN
      cachedir/joblib/run/GridSearchForModels/b3db96391ec83e1a8547f6958c50d7fb/output.pkl
  18. 1
      cachedir/joblib/run/GridSearchForModels/c9f7ad12fbeadc6012d9b5d28fd5d889/metadata.json
  19. BIN
      cachedir/joblib/run/GridSearchForModels/ce3deef62fcdb9a13275d0d7a193fdfa/output.pkl
  20. 1
      cachedir/joblib/run/GridSearchForModels/d47cb434b4b20b0c82fcf3a60162c740/metadata.json
  21. BIN
      cachedir/joblib/run/GridSearchForModels/e8cc5471eed484384e9281c824bce22c/output.pkl
  22. 1
      cachedir/joblib/run/GridSearchForModels/f4d33884dc001f572bf3782e5bcfc337/metadata.json
  23. BIN
      cachedir/joblib/run/GridSearchForModels/feff3eb388078b3f79cf8488ff40a745/output.pkl
  24. 1
      frontend/src/components/BalancePredictions.vue
  25. 8
      frontend/src/components/BarChart.vue
  26. 21
      frontend/src/components/DataSpace.vue
  27. 6
      frontend/src/components/Heatmap.vue
  28. 3
      frontend/src/components/Main.vue
  29. 3
      frontend/src/components/PCPData.vue
  30. 17
      frontend/src/components/PerMetricBarChart.vue
  31. 21
      frontend/src/components/PredictionsSpace.vue
  32. 25
      frontend/src/components/ScatterPlot.vue
  33. 6
      frontend/src/components/ToggleSelection.vue
  34. 76
      run.py

Binary file not shown.

@ -0,0 +1 @@
{"duration": 851.1996550559998, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "GradientBoostingClassifier(ccp_alpha=0.0, criterion='mae', init=None,\n learning_rate=0.12, loss='deviance', max_depth=3,\n max_features=None, max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=114,\n n_iter_no_change=None, presort='deprecated',\n random_state=42, subsample=1.0, tol=0.0001,\n validation_fraction=0.1, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114], 'learning_rate': [0.01, 0.12], 'criterion': ['friedman_mse', 'mse', 'mae']}", "eachAlgor": "'GradB'", "AlgorithmsIDsEnd": "2926", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 1382.6987252235413, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=1.2,\n n_estimators=79, random_state=42)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79], 'learning_rate': [0.1, 1.2000000000000002], 'algorithm': ['SAMME.R', 'SAMME']}", "eachAlgor": "'AdaB'", "AlgorithmsIDsEnd": "2766", "toggle": "1"}}

File diff suppressed because one or more lines are too long

@ -0,0 +1 @@
{"duration": 508.0293490886688, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LogisticRegression(C=1.925, class_weight=None, dual=False, fit_intercept=True,\n intercept_scaling=1, l1_ratio=None, max_iter=200,\n multi_class='auto', n_jobs=None, penalty='none',\n random_state=42, solver='saga', tol=0.0001, verbose=0,\n warm_start=False)", "params": "{'C': [0.5, 0.575, 0.6499999999999999, 0.7249999999999999, 0.7999999999999998, 0.8749999999999998, 0.9499999999999997, 1.0249999999999997, 1.0999999999999996, 1.1749999999999996, 1.2499999999999996, 1.3249999999999995, 1.3999999999999995, 1.4749999999999994, 1.5499999999999994, 1.6249999999999993, 1.6999999999999993, 1.7749999999999992, 1.8499999999999992, 1.9249999999999992], 'max_iter': [50, 100, 150, 200], 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']}", "eachAlgor": "'LR'", "AlgorithmsIDsEnd": "1356", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 141.02080583572388, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "QuadraticDiscriminantAnalysis(priors=None, reg_param=0.98,\n store_covariance=False, tol=0.00081)", "params": "{'reg_param': [0.0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64, 0.66, 0.68, 0.7000000000000001, 0.72, 0.74, 0.76, 0.78, 0.8, 0.8200000000000001, 0.84, 0.86, 0.88, 0.9, 0.92, 0.9400000000000001, 0.96, 0.98], 'tol': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001]}", "eachAlgor": "'QDA'", "AlgorithmsIDsEnd": "2196", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 2238.337814092636, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "AlgorithmsIDsEnd": "2446", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 1911.6582510471344, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']}", "eachAlgor": "'KNN'", "AlgorithmsIDsEnd": "0", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 110.97186303138733, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "LinearDiscriminantAnalysis(n_components=None, priors=None, shrinkage=0.99,\n solver='eigen', store_covariance=False, tol=0.0001)", "params": "{'shrinkage': [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35000000000000003, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41000000000000003, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47000000000000003, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.5700000000000001, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.6900000000000001, 0.7000000000000001, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.8200000000000001, 0.8300000000000001, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.9400000000000001, 0.9500000000000001, 0.96, 0.97, 0.98, 0.99], 'solver': ['lsqr', 'eigen']}", "eachAlgor": "'LDA'", "AlgorithmsIDsEnd": "1996", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 10927.442919969559, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "SVC(C=4.39, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,\n decision_function_shape='ovr', degree=3, gamma='scale', kernel='sigmoid',\n max_iter=-1, probability=True, random_state=42, shrinking=True, tol=0.001,\n verbose=False)", "params": "{'C': [0.1, 0.21000000000000002, 0.32000000000000006, 0.43000000000000005, 0.54, 0.65, 0.7600000000000001, 0.8700000000000001, 0.9800000000000001, 1.09, 1.2000000000000002, 1.3100000000000003, 1.4200000000000004, 1.5300000000000002, 1.6400000000000003, 1.7500000000000002, 1.8600000000000003, 1.9700000000000004, 2.08, 2.1900000000000004, 2.3000000000000003, 2.4100000000000006, 2.5200000000000005, 2.6300000000000003, 2.7400000000000007, 2.8500000000000005, 2.9600000000000004, 3.0700000000000003, 3.1800000000000006, 3.2900000000000005, 3.4000000000000004, 3.5100000000000007, 3.6200000000000006, 3.7300000000000004, 3.8400000000000007, 3.9500000000000006, 4.0600000000000005, 4.17, 4.28, 4.390000000000001], 'kernel': ['rbf', 'linear', 'poly', 'sigmoid']}", "eachAlgor": "'SVC'", "AlgorithmsIDsEnd": "576", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 949.3681681156158, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "MLPClassifier(activation='tanh', alpha=0.00081, batch_size='auto', beta_1=0.9,\n beta_2=0.999, early_stopping=False, epsilon=1e-08,\n hidden_layer_sizes=(100,), learning_rate='constant',\n learning_rate_init=0.001, max_fun=15000, max_iter=100,\n momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,\n power_t=0.5, random_state=42, shuffle=True, solver='sgd',\n tol=0.00081, validation_fraction=0.1, verbose=False,\n warm_start=False)", "params": "{'alpha': [1e-05, 0.00021, 0.00041000000000000005, 0.0006100000000000001, 0.0008100000000000001], 'tol': [1e-05, 0.00041000000000000005, 0.0008100000000000001], 'max_iter': [100], 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver': ['adam', 'sgd']}", "eachAlgor": "'MLP'", "AlgorithmsIDsEnd": "1236", "toggle": "1"}}

@ -0,0 +1 @@
{"duration": 1727.4443399906158, "input_args": {"XData": " Age Sex Cp Trestbps Chol Fbs Restecg Thalach Exang Oldpeak Slope Ca Thal\n0 63 1 3 145 233 1 0 150 0 2.3 0 0 1\n1 37 1 2 130 250 0 1 187 0 3.5 0 0 2\n2 41 0 1 130 204 0 0 172 0 1.4 2 0 2\n3 56 1 1 120 236 0 1 178 0 0.8 2 0 2\n4 57 0 0 120 354 0 1 163 1 0.6 2 0 2\n.. ... ... .. ... ... ... ... ... ... ... ... .. ...\n298 57 0 0 140 241 0 1 123 1 0.2 1 0 3\n299 45 1 3 110 264 0 1 132 0 1.2 1 0 3\n300 68 1 0 144 193 1 1 141 0 3.4 1 2 3\n301 57 1 0 130 131 0 1 115 1 1.2 1 1 3\n302 57 0 1 130 236 0 0 174 0 0.0 1 1 2\n\n[303 rows x 13 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "ExtraTreesClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n criterion='entropy', max_depth=None, max_features='auto',\n max_leaf_nodes=None, max_samples=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=139,\n n_jobs=None, oob_score=False, random_state=42, verbose=0,\n warm_start=False)", "params": "{'n_estimators': [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'ExtraT'", "AlgorithmsIDsEnd": "2606", "toggle": "1"}}

@ -37,7 +37,6 @@
var performancePerModel = JSON.parse(this.resultsfromOverview[0])
var performancePerModelSelection = []
console.log(this.newResultsFromSelection)
if (this.newResultsFromSelection.length != 0) {
var performancePerModelSelection = JSON.parse(this.newResultsFromSelection[0])
}

@ -468,8 +468,8 @@ export default {
beautifyLabels.push('Presence of Hypotheticality')
}
else if (this.RetrieveDataSet == 'HeartC') {
beautifyLabels.push('< 50% diameter narrowing / Healthy')
beautifyLabels.push('> 50% diameter narrowing / Diseased')
beautifyLabels.push('< 50% Diameter Narrowing / Healthy')
beautifyLabels.push('> 50% Diameter Narrowing / Diseased')
} else {
target_names.forEach(element => {
beautifyLabels.push(element)
@ -544,10 +544,10 @@ export default {
eventData.points.forEach((e) => {
tName = e.data.name.replace(/ *\([^)]*\) */g, "")
});
if (tName == "< 50% diameter narrowing / Healthy") {
if (tName == "< 50% Diameter Narrowing / Healthy") {
tName = 0
this.tNameAll = 0
} else if (tName == "> 50% diameter narrowing / Diseased"){
} else if (tName == "> 50% Diameter Narrowing / Diseased"){
tName = 1
this.tNameAll = 1
} else {

@ -94,18 +94,23 @@ export default {
},
merge() {
EventBus.$emit('SendAction', 'merge')
EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
},
remove () {
EventBus.$emit('SendAction', 'remove')
EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
},
compose () {
EventBus.$emit('SendAction', 'compose')
EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
},
save () {
EventBus.$emit('SendProvenance', 'save')
EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
},
restore () {
EventBus.$emit('SendProvenance', 'restore')
EventBus.$emit('SendSelectedPointsToServerEventfromData', [])
},
clean(obj) {
var propNames = Object.getOwnPropertyNames(obj);
@ -125,10 +130,14 @@ export default {
var target_names = JSON.parse(this.dataPoints[0])
const XandYCoordinatesMDS = JSON.parse(this.dataPoints[1])
console.log(XandYCoordinatesMDS)
const DataSet = JSON.parse(this.dataPoints[2])
const DataSetY = JSON.parse(this.dataPoints[3])
const originalDataLabels = JSON.parse(this.dataPoints[4])
const originalDataLabels = JSON.parse(this.dataPoints[3])
//console.log(DataSetY)
//const originalDataLabels = JSON.parse(this.dataPoints[4])
console.log(originalDataLabels)
var DataSetParse = JSON.parse(DataSet)
console.log(DataSetParse)
var stringParameters = []
for (let i = 0; i < DataSetParse.length; i++) {
this.clean(DataSetParse[i])
@ -170,8 +179,8 @@ export default {
beautifyLabels.push('Presence of Hypotheticality')
}
else if (this.RetrieveDataSet == 'HeartC') {
beautifyLabels.push('< 50% diameter narrowing / Healthy')
beautifyLabels.push('> 50% diameter narrowing / Diseased')
beautifyLabels.push('< 50% Diameter Narrowing / Healthy')
beautifyLabels.push('> 50% Diameter Narrowing / Diseased')
} else {
target_names.forEach(element => {
beautifyLabels.push(element)
@ -201,6 +210,7 @@ export default {
result.Yax = Yaxs
result.ID = IDs
result.colorUpdates = colorUpdate
console.log(result)
var traces = []
var layout = []
@ -453,6 +463,7 @@ export default {
this.selectedDataPoints()
}
this.onlyOnce = false
},
selectedDataPoints () {
const OverviewDataPlotly = document.getElementById('OverviewDataPlotly')
@ -471,6 +482,7 @@ export default {
ClassifierIDsListCleared.push(numberNumb)
}
}
console.log(ClassifierIDsListCleared)
if (ClassifierIDsList != '') {
EventBus.$emit('ChangeKey', 1)
EventBus.$emit('SendSelectedPointsToServerEventfromData', ClassifierIDsListCleared)
@ -482,6 +494,7 @@ export default {
}
},
mounted() {
EventBus.$on('onlyOnce', data => { this.onlyOnce = data })
// initialize the first data space projection based on the data set
EventBus.$on('emittedEventCallingDataSpacePlotView', data => {
this.dataPoints = data})

@ -350,7 +350,7 @@ export default {
return d.idx;
})
.attr("class", "row");
svg.append("text").attr("x", 220).attr("y", -50).text("Models").style("font-size", "16px").attr("alignment-baseline","top")
svg.append("text").attr("x", 220).attr("y", -50).text("Models").style("font-size", "16px").attr("alignment-baseline","top")
svg.append("text").attr("transform", "rotate(-90)").attr("x", -130).attr("y", -45).style("text-anchor", "middle").style("font-size", "16px").text("Data Features");
var heatMap = row.selectAll(".cell")
.data(function(d) {
@ -393,7 +393,7 @@ export default {
d3.select('#rowLabel_' + k).classed("hover", true);
if (d != null) {
tooltip.style("visibility", "visible");
tooltip.html('<div class="heatmap_tooltip">' + d.toFixed(3) + '</div>');
tooltip.html('<div class="heatmap_tooltip">' + d.toFixed(2) + '</div>');
} else
tooltip.style("visibility", "hidden");
})
@ -478,6 +478,8 @@ export default {
})
.attr("y", viewerPosTop + cellSize);
svgLeg.append("text").attr("x", 220).attr("y", 50).text("Importance (Normalized)").style("font-size", "16px").attr("alignment-baseline","top")
//==================================================
// Change ordering of cells
function sortByValues(rORc, i, sortOrder) {

@ -325,6 +325,7 @@ export default Vue.extend({
.then(response => {
this.OverviewResults = response.data.OverviewResults
console.log('Server successfully sent all the data related to visualizations!')
EventBus.$emit('onlyOnce', true)
EventBus.$emit('emittedEventCallingScatterPlot', this.OverviewResults)
// if (this.firstTimeFlag == 1) {
// this.selectedModels_Stack.push(0)
@ -874,8 +875,10 @@ export default Vue.extend({
})
},
ActionFun () {
console.log(this.actionData)
const path = `http://127.0.0.1:5000/data/UpdateAction`
const postData = {
points: this.dataPointsSelfromDataSpace,
action: this.actionData
}
const axiosConfig = {

@ -46,7 +46,7 @@ export default {
}
}
if (DataSetParse.length == this.ClassifierIDsListClearedData.length || this.ClassifierIDsListClearedData.length == 0)
if (DataSetParse.length == this.ClassifierIDsListClearedData.length || this.ClassifierIDsListClearedData.length == 0) {
var pc = ParCoords()("#PCPDataView")
.data(DataSetParse)
.width(1200)
@ -60,6 +60,7 @@ export default {
.brushMode('1D-axes')
.reorderable()
.interactive();
}
else {
var pc = ParCoords()("#PCPDataView")
.data(DataSetParse)

@ -57,6 +57,7 @@ export default {
}
}
}
console.log(resultsColors)
var width = this.WH[0]*6.5 // interactive visualization
var height = this.WH[1]*0.5 // interactive visualization
var trace1 = {
@ -120,33 +121,33 @@ export default {
}
else if (xAxisHovered == 'G-Mean') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','<b>G-Mean</b>','<b>G-Mean</b>','<b>G-Mean</b>','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','MCC','ROC AUC','Log Loss']]);
index = 3
index = 1
}
else if (xAxisHovered == 'Precision') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','<b>Precision</b>','<b>Precision</b>','<b>Precision</b>','Recall','Recall','Recall','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','MCC','ROC AUC','Log Loss']]);
index = 4
index = 2
}
else if (xAxisHovered == 'Recall') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','<b>Recall</b>','<b>Recall</b>','<b>Recall</b>','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','MCC','ROC AUC','Log Loss']]);
index = 5
index = 3
}
else if (xAxisHovered == 'F-Beta Score') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','<b>F-Beta Score</b>','MCC','ROC AUC','Log Loss']]);
index = 6
index = 4
}
else if (xAxisHovered == 'MCC') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','<b>MCC</b>','ROC AUC','Log Loss']]);
index = 7
index = 5
}
else if (xAxisHovered == 'ROC AUC') {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','MCC','<b>ROC AUC</b>','Log Loss']]);
index = 8
index = 6
}
else {
Plotly.restyle(boxPlot, 'x', [['Accuracy','G-Mean','G-Mean','G-Mean','Precision','Precision','Precision','Recall','Recall','Recall','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','F-Beta Score','MCC','ROC AUC','<b>Log Loss</b>']]);
index = 9
index = 7
}
//EventBus.$emit('updateMetricsScatter', resultsColors[index])
EventBus.$emit('updateMetricsScatter', resultsColors[index])
});
},
reset () {

@ -28,7 +28,8 @@ export default {
representationSelection: 'mds',
RetrieveDataSet: 'HeartC',
colorsValues: ['#808000','#008080','#bebada','#fccde5','#d9d9d9','#bc80bd','#ccebc5'],
WH: []
WH: [],
onlyOnce: true,
}
},
methods: {
@ -59,8 +60,8 @@ export default {
var target_names = JSON.parse(this.PredictionsData[4])
const XandYCoordinatesMDS = JSON.parse(this.PredictionsData[8])
const DataSet = JSON.parse(this.PredictionsData[14])
const DataSetY = JSON.parse(this.PredictionsData[15])
const originalDataLabels = JSON.parse(this.PredictionsData[16])
const originalDataLabels = JSON.parse(this.PredictionsData[15])
//const originalDataLabels = JSON.parse(this.PredictionsData[16])
var DataSetParse = JSON.parse(DataSet)
var stringParameters = []
for (let i = 0; i < DataSetParse.length; i++) {
@ -81,8 +82,8 @@ export default {
beautifyLabels.push('Presence of Hypotheticality')
}
else if (this.RetrieveDataSet == 'HeartC') {
beautifyLabels.push('< 50% diameter narrowing / Healthy')
beautifyLabels.push('> 50% diameter narrowing / Diseased')
beautifyLabels.push('< 50% Diameter Narrowing / Healthy')
beautifyLabels.push('> 50% Diameter Narrowing / Diseased')
} else {
target_names.forEach(element => {
beautifyLabels.push(element)
@ -107,7 +108,7 @@ export default {
const aux_X = result.Xax.filter((item, index) => originalDataLabels[index] == target_names[i]);
const aux_Y = result.Yax.filter((item, index) => originalDataLabels[index] == target_names[i]);
const aux_ID = result.ID.filter((item, index) => originalDataLabels[index] == target_names[i]);
console.log(aux_X)
var Text = aux_ID.map((item, index) => {
let popup = 'Data Point ID: ' + item + '<br> Details: ' + stringParameters[item]
return popup;
@ -279,11 +280,14 @@ export default {
var config = {scrollZoom: true, displaylogo: false, showLink: false, showSendToCloud: false, modeBarButtonsToRemove: ['toImage', 'toggleSpikelines', 'autoScale2d', 'hoverClosestGl2d','hoverCompareCartesian','select2d','hoverClosestCartesian','zoomIn2d','zoomOut2d','zoom2d'], responsive: true}
Plotly.newPlot('OverviewPredPlotly', traces, layout, config)
this.selectedPointsOverview()
if (this.onlyOnce) {
this.selectedPointsOverview()
}
this.onlyOnce = false
},
UpdateScatterPlot () {
const XandYCoordinates = JSON.parse(this.UpdatedData[0])
console.log(XandYCoordinates)
Plotly.animate('OverviewPredPlotly', {
data: [
@ -326,6 +330,7 @@ export default {
},
},
mounted() {
EventBus.$on('onlyOnce', data => { this.onlyOnce = data })
EventBus.$on('updatePredictionsSpace', data => { this.UpdatedData = data })
EventBus.$on('updatePredictionsSpace', this.UpdateScatterPlot)
EventBus.$on('emittedEventCallingPredictionsSpacePlotView', data => {

@ -96,13 +96,22 @@ export default {
Plotly.purge('OverviewPlotly')
var colorsforScatterPlot = JSON.parse(this.ScatterPlotResults[0])
/*if (this.newColorsUpdate.length != 0) {
console.log(this.newColorsUpdate)
if (this.newColorsUpdate.length != 0) {
console.log('den mpike')
colorsforScatterPlot = []
let resultsClear = JSON.parse(this.newColorsUpdate)
for (let j = 0; j < Object.values(resultsClear).length; j++) {
colorsforScatterPlot.push(Object.values(resultsClear)[j])
}
}*/
this.colorsStore = []
this.MDSStore = []
this.parametersStore = []
this.TSNEStore = []
this.modelIDStore = []
this.UMAPStore = []
}
console.log(colorsforScatterPlot)
var MDSData = JSON.parse(this.ScatterPlotResults[1])
var parametersLoc = JSON.parse(this.ScatterPlotResults[2])
@ -124,6 +133,8 @@ export default {
TSNEData = this.TSNEStore.slice(this.activeModels,this.activeModels+1)[0]
modelId = this.modelIDStore.slice(this.activeModels,this.activeModels+1)[0]
UMAPData = this.UMAPStore.slice(this.activeModels,this.activeModels+1)[0]
console.log(colorsforScatterPlot)
}
EventBus.$emit('sendPointsNumber', modelId.length)
@ -197,7 +208,6 @@ export default {
EventBus.$emit('NewHeatmapAccordingtoNewStack', modelId)
}
var DataGeneral
var maxX
@ -470,8 +480,11 @@ export default {
}
},
mounted() {
/*EventBus.$on('updateMetricsScatter', data => { this.newColorsUpdate = data })
EventBus.$on('updateMetricsScatter', this.ScatterPlotView)*/
EventBus.$on('onlyOnce', data => { this.onlyOnce = data })
EventBus.$on('updateMetricsScatter', data => { this.newColorsUpdate = data })
EventBus.$on('updateMetricsScatter', this.ScatterPlotView)
EventBus.$on('updateRemaining', data => { this.pushModelsRemaining = data })
EventBus.$on('requestProven', data => { this.activeModels = data })

@ -47,7 +47,7 @@ export default {
$('#toggle-uni').change(function() {
var toggleIDUni = document.getElementById('toggle-uni')
var toggleIDPer = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-fi')
if (toggleIDUni.checked === false) {
EventBus.$emit('toggle1', 0)
} else {
@ -62,7 +62,7 @@ export default {
$('#toggle-per').change(function() {
var toggleIDUni = document.getElementById('toggle-uni')
var toggleIDPer = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-fi')
if (toggleIDPer.checked === false) {
EventBus.$emit('toggle2', 0)
} else {
@ -77,7 +77,7 @@ export default {
$('#toggle-fi').change(function() {
var toggleIDUni = document.getElementById('toggle-uni')
var toggleIDPer = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-per')
var toggleIDFi = document.getElementById('toggle-fi')
if (toggleIDFi.checked === false) {
EventBus.$emit('toggle3', 0)
} else {

@ -418,7 +418,7 @@ def callPreResults():
global yData
global target_names
global impDataInst
print(XData)
DataSpaceResMDS = FunMDS(XData)
DataSpaceResTSNE = FunTsne(XData)
DataSpaceResTSNE = DataSpaceResTSNE.tolist()
@ -442,7 +442,7 @@ def callPreResults():
@app.route('/data/requestDataSpaceResults', methods=["GET", "POST"])
def SendDataSpaceResults():
global preResults
callPreResults()
response = {
'preDataResults': preResults,
}
@ -1689,8 +1689,6 @@ def RetrieveSelClassifiersIDandRemoveFromStack():
PredictionProbSelUpdate = PreprocessingPredUpdate(ClassifierIDsList)
print(PredictionProbSelUpdate)
global resultsUpdatePredictionSpace
resultsUpdatePredictionSpace = []
resultsUpdatePredictionSpace.append(json.dumps(PredictionProbSelUpdate[0])) # Position: 0
@ -1932,7 +1930,7 @@ def RetrieveSelDataPoints():
if (len(paramsListSeptoDicGradB['n_estimators']) is 0):
RetrieveParamsClearedListGradB = []
print(algorithms)
for eachAlgor in algorithms:
if (eachAlgor) == 'KNN':
clf = KNeighborsClassifier()
@ -2093,6 +2091,17 @@ def RetrieveSelDataPoints():
df_concatMetrics = pd.concat([dfKNNCleared, dfSVCCleared, dfGausNBCleared, dfMLPCleared, dfLRCleared, dfLDACleared, dfQDACleared, dfRFCleared, dfExtraTCleared, dfAdaBCleared, dfGradBCleared])
else:
dfSVCCleared = pd.DataFrame()
dfKNNCleared = pd.DataFrame()
dfGausNBCleared = pd.DataFrame()
dfMLPCleared = pd.DataFrame()
dfLRCleared = pd.DataFrame()
dfLDACleared = pd.DataFrame()
dfQDACleared = pd.DataFrame()
dfRFCleared = pd.DataFrame()
dfExtraTCleared = pd.DataFrame()
dfAdaBCleared = pd.DataFrame()
dfGradBCleared = pd.DataFrame()
if (len(metricsSelList[0]) != 0):
dicKNN = json.loads(metricsSelList[0])
dfKNN = pd.DataFrame.from_dict(dicKNN)
@ -2103,8 +2112,7 @@ def RetrieveSelDataPoints():
dfKNNCleared = dfKNN
else:
dfKNNCleared = dfKNN.drop(dfKNN.index[set_diff_df])
df_concatMetrics = dfKNNCleared
elif (len(metricsSelList[1]) != 0):
if (len(metricsSelList[1]) != 0):
dicSVC = json.loads(metricsSelList[1])
dfSVC = pd.DataFrame.from_dict(dicSVC)
parametersSelDataPD = parametersSelData[1].apply(pd.Series)
@ -2114,8 +2122,7 @@ def RetrieveSelDataPoints():
dfSVCCleared = dfSVC
else:
dfSVCCleared = dfSVC.drop(dfSVC.index[set_diff_df])
df_concatMetrics = dfSVCCleared
elif (len(metricsSelList[2]) != 0):
if (len(metricsSelList[2]) != 0):
dicGausNB = json.loads(metricsSelList[2])
dfGausNB = pd.DataFrame.from_dict(dicGausNB)
parametersSelDataPD = parametersSelData[2].apply(pd.Series)
@ -2125,8 +2132,7 @@ def RetrieveSelDataPoints():
dfGausNBCleared = dfGausNB
else:
dfGausNBCleared = dfGausNB.drop(dfGausNB.index[set_diff_df])
df_concatMetrics = dfGausNBCleared
elif (len(metricsSelList[3]) != 0):
if (len(metricsSelList[3]) != 0):
dicMLP = json.loads(metricsSelList[3])
dfMLP = pd.DataFrame.from_dict(dicMLP)
parametersSelDataPD = parametersSelData[3].apply(pd.Series)
@ -2136,8 +2142,7 @@ def RetrieveSelDataPoints():
dfMLPCleared = dfMLP
else:
dfMLPCleared = dfMLP.drop(dfMLP.index[set_diff_df])
df_concatMetrics = dfMLPCleared
elif (len(metricsSelList[4]) != 0):
if (len(metricsSelList[4]) != 0):
dicLR = json.loads(metricsSelList[4])
dfLR = pd.DataFrame.from_dict(dicLR)
parametersSelDataPD = parametersSelData[4].apply(pd.Series)
@ -2147,8 +2152,7 @@ def RetrieveSelDataPoints():
dfLRCleared = dfLR
else:
dfLRCleared = dfLR.drop(dfLR.index[set_diff_df])
df_concatMetrics = dfLRCleared
elif (len(metricsSelList[5]) != 0):
if (len(metricsSelList[5]) != 0):
dicLDA = json.loads(metricsSelList[5])
dfLDA = pd.DataFrame.from_dict(dicLDA)
parametersSelDataPD = parametersSelData[5].apply(pd.Series)
@ -2158,8 +2162,7 @@ def RetrieveSelDataPoints():
dfLDACleared = dfLDA
else:
dfLDACleared = dfLDA.drop(dfLDA.index[set_diff_df])
df_concatMetrics = dfLDACleared
elif (len(metricsSelList[6]) != 0):
if (len(metricsSelList[6]) != 0):
dicQDA = json.loads(metricsSelList[6])
dfQDA = pd.DataFrame.from_dict(dicQDA)
parametersSelDataPD = parametersSelData[6].apply(pd.Series)
@ -2169,8 +2172,7 @@ def RetrieveSelDataPoints():
dfQDACleared = dfQDA
else:
dfQDACleared = dfQDA.drop(dfQDA.index[set_diff_df])
df_concatMetrics = dfQDACleared
elif (len(metricsSelList[7]) != 0):
if (len(metricsSelList[7]) != 0):
dicRF = json.loads(metricsSelList[7])
dfRF = pd.DataFrame.from_dict(dicRF)
parametersSelDataPD = parametersSelData[7].apply(pd.Series)
@ -2180,8 +2182,7 @@ def RetrieveSelDataPoints():
dfRFCleared = dfRF
else:
dfRFCleared = dfRF.drop(dfRF.index[set_diff_df])
df_concatMetrics = dfRFCleared
elif (len(metricsSelList[8]) != 0):
if (len(metricsSelList[8]) != 0):
dicExtraT = json.loads(metricsSelList[8])
dfExtraT = pd.DataFrame.from_dict(dicExtraT)
parametersSelDataPD = parametersSelData[8].apply(pd.Series)
@ -2191,8 +2192,7 @@ def RetrieveSelDataPoints():
dfExtraTCleared = dfExtraT
else:
dfExtraTCleared = dfExtraT.drop(dfExtraT.index[set_diff_df])
df_concatMetrics = dfExtraTCleared
elif (len(metricsSelList[9]) != 0):
if (len(metricsSelList[9]) != 0):
dicAdaB = json.loads(metricsSelList[9])
dfAdaB = pd.DataFrame.from_dict(dicAdaB)
parametersSelDataPD = parametersSelData[9].apply(pd.Series)
@ -2202,8 +2202,7 @@ def RetrieveSelDataPoints():
dfAdaBCleared = dfAdaB
else:
dfAdaBCleared = dfAdaB.drop(dfAdaB.index[set_diff_df])
df_concatMetrics = dfAdaBCleared
else:
if (len(metricsSelList[10]) != 0):
dicGradB = json.loads(metricsSelList[10])
dfGradB = pd.DataFrame.from_dict(dicGradB)
parametersSelDataPD = parametersSelData[10].apply(pd.Series)
@ -2213,14 +2212,15 @@ def RetrieveSelDataPoints():
dfGradBCleared = dfGradB
else:
dfGradBCleared = dfGradB.drop(dfGradB.index[set_diff_df])
df_concatMetrics = dfGradBCleared
df_concatMetrics = pd.concat([dfKNNCleared, dfSVCCleared, dfGausNBCleared, dfMLPCleared, dfLRCleared, dfLDACleared, dfQDACleared, dfRFCleared, dfExtraTCleared, dfAdaBCleared, dfGradBCleared])
df_concatMetrics = df_concatMetrics.reset_index(drop=True)
print(df_concatMetrics)
global foreachMetricResults
foreachMetricResults = []
foreachMetricResults = preProcSumForEachMetric(factors, df_concatMetrics)
df_concatMetrics.loc[:, 'log_loss'] = 1 - df_concatMetrics.loc[:, 'log_loss']
print(df_concatMetrics)
global sumPerClassifierSelUpdate
sumPerClassifierSelUpdate = []
sumPerClassifierSelUpdate = preProcsumPerMetricAccordingtoData(factors, df_concatMetrics)
@ -2230,7 +2230,8 @@ def RetrieveSelDataPoints():
ModelSpaceMDSNewSel = FunMDS(df_concatMetrics)
ModelSpaceMDSNewSelComb = [list(a) for a in zip(ModelSpaceMDSNewSel[0], ModelSpaceMDSNewSel[1])]
print(len(ModelSpaceMDSNewComb))
print(len(ModelSpaceMDSNewSelComb))
global mt2xFinal
mt2xFinal = []
mtx1, mtx2, disparity = procrustes(ModelSpaceMDSNewComb, ModelSpaceMDSNewSelComb)
@ -2242,6 +2243,8 @@ def RetrieveSelDataPoints():
def GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, DataPointsSel):
global XData
global yData
if (len(params) == 0):
resultsMetrics.append([]) # Position: 0 and so on
parametersSelData.append([])
@ -2253,8 +2256,7 @@ def GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, DataPointsSel):
.getOrCreate()
)
sc = spark.sparkContext
XDatasubset = XData.loc[DataPointsSel,:]
XDatasubset = XData.iloc[DataPointsSel,:]
yDataSubset = [yData[i] for i in DataPointsSel]
@ -3022,19 +3024,19 @@ def RetrieveAction():
filterActionCleared = json.loads(filterAction)
global filterActionFinal
global dataSpacePointsIDs
global filterDataFinal
global XData
global yData
filterActionFinal = filterActionCleared['action']
dataSpacePointsIDs = filterActionCleared['points']
print(dataSpacePointsIDs)
if (filterActionFinal == 'merge'):
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
mean = XData.loc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
median = XData.loc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
yDataSelected = [yData[i] for i in dataSpacePointsIDs]
storeMode = mode(yDataSelected)
@ -3044,10 +3046,10 @@ def RetrieveAction():
XData.reset_index(drop=True, inplace=True)
elif (filterActionFinal == 'compose'):
if (filterDataFinal == 'mean' or filterDataFinal == ''):
mean = XData.iloc[dataSpacePointsIDs, :].mean()
mean = XData.loc[dataSpacePointsIDs, :].mean()
XData.loc[len(XData)]= mean
else:
median = XData.iloc[dataSpacePointsIDs, :].median()
median = XData.loc[dataSpacePointsIDs, :].median()
XData.loc[len(XData)]= median
yDataSelected = [yData[i] for i in dataSpacePointsIDs]
storeMode = mode(yDataSelected)

Loading…
Cancel
Save