diff --git a/__pycache__/run.cpython-37.pyc b/__pycache__/run.cpython-37.pyc index 48006013e..b63815b57 100644 Binary files a/__pycache__/run.cpython-37.pyc and b/__pycache__/run.cpython-37.pyc differ diff --git a/cachedir/joblib/run/GridSearchForModels/34dd4fa44cf8d83f42cfacc70a3fdd71/metadata.json b/cachedir/joblib/run/GridSearchForModels/34dd4fa44cf8d83f42cfacc70a3fdd71/metadata.json index eed954a99..2908451aa 100644 --- a/cachedir/joblib/run/GridSearchForModels/34dd4fa44cf8d83f42cfacc70a3fdd71/metadata.json +++ b/cachedir/joblib/run/GridSearchForModels/34dd4fa44cf8d83f42cfacc70a3fdd71/metadata.json @@ -1 +1 @@ -{"duration": 277.43560791015625, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file +{"duration": 291.49311804771423, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/GridSearchForModels/8e80923b781a32dc2365aa1381c36157/metadata.json b/cachedir/joblib/run/GridSearchForModels/3e589fe0fa65fac056ce8e152ff3ecba/metadata.json similarity index 94% rename from cachedir/joblib/run/GridSearchForModels/8e80923b781a32dc2365aa1381c36157/metadata.json rename to cachedir/joblib/run/GridSearchForModels/3e589fe0fa65fac056ce8e152ff3ecba/metadata.json index 1f8b8aba2..ba2a5faaa 100644 --- a/cachedir/joblib/run/GridSearchForModels/8e80923b781a32dc2365aa1381c36157/metadata.json +++ b/cachedir/joblib/run/GridSearchForModels/3e589fe0fa65fac056ce8e152ff3ecba/metadata.json @@ -1 +1 @@ -{"duration": 359.44206166267395, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}} \ No newline at end of file +{"duration": 335.52157711982727, "input_args": {"XData": " sepal_l sepal_w petal_l petal_w\n0 6.3 3.3 6.0 2.5\n1 7.1 3.0 5.9 2.1\n2 5.8 2.7 5.1 1.9\n3 6.3 2.9 5.6 1.8\n4 7.6 3.0 6.6 2.1\n.. ... ... ... ...\n145 5.1 3.8 1.6 0.2\n146 5.0 3.5 1.6 0.6\n147 5.1 3.4 1.5 0.2\n148 4.6 3.2 1.4 0.2\n149 4.8 3.0 1.4 0.3\n\n[150 rows x 4 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}} \ No newline at end of file diff --git a/cachedir/joblib/run/GridSearchForModels/65cf512fe73627ad01497d789001f38b/output.pkl b/cachedir/joblib/run/GridSearchForModels/65cf512fe73627ad01497d789001f38b/output.pkl index b369180f1..a1842fa6f 100644 Binary files a/cachedir/joblib/run/GridSearchForModels/65cf512fe73627ad01497d789001f38b/output.pkl and b/cachedir/joblib/run/GridSearchForModels/65cf512fe73627ad01497d789001f38b/output.pkl differ diff --git a/cachedir/joblib/run/GridSearchForModels/d109acd8d5a29b882753c4dd79f6b7ac/output.pkl b/cachedir/joblib/run/GridSearchForModels/d109acd8d5a29b882753c4dd79f6b7ac/output.pkl deleted file mode 100644 index a0d48e183..000000000 Binary files a/cachedir/joblib/run/GridSearchForModels/d109acd8d5a29b882753c4dd79f6b7ac/output.pkl and /dev/null differ diff --git a/cachedir/joblib/run/GridSearchForModels/d3f870ddccd6a0536b79f604734d6849/output.pkl b/cachedir/joblib/run/GridSearchForModels/d3f870ddccd6a0536b79f604734d6849/output.pkl deleted file mode 100644 index c58dcb023..000000000 Binary files a/cachedir/joblib/run/GridSearchForModels/d3f870ddccd6a0536b79f604734d6849/output.pkl and /dev/null differ diff --git a/cachedir/joblib/run/GridSearchForModels/d3ffb9c0e5d4e64abbb8f8a71e13e521/metadata.json b/cachedir/joblib/run/GridSearchForModels/d3ffb9c0e5d4e64abbb8f8a71e13e521/metadata.json deleted file mode 100644 index d69cbbe5a..000000000 --- a/cachedir/joblib/run/GridSearchForModels/d3ffb9c0e5d4e64abbb8f8a71e13e521/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 2426.6991608142853, "input_args": {"XData": " Pregnan Glucose BloodPress SkinThick Insulin BMI DPF Age\n0 8 183 64 0 0 23.3 0.672 32\n1 2 197 70 45 543 30.5 0.158 53\n2 8 125 96 0 0 0.0 0.232 54\n3 10 168 74 0 0 38.0 0.537 34\n4 1 189 60 23 846 30.1 0.398 59\n.. ... ... ... ... ... ... ... ...\n763 9 89 62 0 0 22.5 0.142 33\n764 2 122 70 27 0 36.8 0.340 27\n765 10 101 76 48 180 32.9 0.171 63\n766 5 121 72 23 112 26.2 0.245 30\n767 1 93 70 31 0 30.4 0.315 23\n\n[768 rows x 8 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "KNeighborsClassifier(algorithm='ball_tree', leaf_size=30, metric='minkowski',\n metric_params=None, n_jobs=None, n_neighbors=24, p=2,\n weights='distance')", "params": "{'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], 'weights': ['uniform', 'distance'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski']}", "eachAlgor": "'KNN'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "0"}} \ No newline at end of file diff --git a/cachedir/joblib/run/GridSearchForModels/ef9a593cce41dd71bdac1d445edc2a58/output.pkl b/cachedir/joblib/run/GridSearchForModels/ef9a593cce41dd71bdac1d445edc2a58/output.pkl index 668031a0d..1d77cd3a6 100644 Binary files a/cachedir/joblib/run/GridSearchForModels/ef9a593cce41dd71bdac1d445edc2a58/output.pkl and b/cachedir/joblib/run/GridSearchForModels/ef9a593cce41dd71bdac1d445edc2a58/output.pkl differ diff --git a/cachedir/joblib/run/GridSearchForModels/fa486d0ef10b213eeae65d5db1f9232b/metadata.json b/cachedir/joblib/run/GridSearchForModels/fa486d0ef10b213eeae65d5db1f9232b/metadata.json deleted file mode 100644 index 97542d264..000000000 --- a/cachedir/joblib/run/GridSearchForModels/fa486d0ef10b213eeae65d5db1f9232b/metadata.json +++ /dev/null @@ -1 +0,0 @@ -{"duration": 923.801488161087, "input_args": {"XData": " Pregnan Glucose BloodPress SkinThick Insulin BMI DPF Age\n0 8 183 64 0 0 23.3 0.672 32\n1 2 197 70 45 543 30.5 0.158 53\n2 8 125 96 0 0 0.0 0.232 54\n3 10 168 74 0 0 38.0 0.537 34\n4 1 189 60 23 846 30.1 0.398 59\n.. ... ... ... ... ... ... ... ...\n763 9 89 62 0 0 22.5 0.142 33\n764 2 122 70 27 0 36.8 0.340 27\n765 10 101 76 48 180 32.9 0.171 63\n766 5 121 72 23 112 26.2 0.245 30\n767 1 93 70 31 0 30.4 0.315 23\n\n[768 rows x 8 columns]", "yData": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]", "clf": "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',\n max_depth=None, max_features='auto', max_leaf_nodes=None,\n min_impurity_decrease=0.0, min_impurity_split=None,\n min_samples_leaf=1, min_samples_split=2,\n min_weight_fraction_leaf=0.0, n_estimators=119,\n n_jobs=None, oob_score=False, random_state=None,\n verbose=0, warm_start=False)", "params": "{'n_estimators': [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119], 'criterion': ['gini', 'entropy']}", "eachAlgor": "'RF'", "factors": "[1, 1, 1, 1, 1]", "AlgorithmsIDsEnd": "576"}} \ No newline at end of file diff --git a/cachedir/joblib/run/GridSearchForModels/func_code.py b/cachedir/joblib/run/GridSearchForModels/func_code.py index 48a7e07d7..32c047996 100644 --- a/cachedir/joblib/run/GridSearchForModels/func_code.py +++ b/cachedir/joblib/run/GridSearchForModels/func_code.py @@ -1,4 +1,4 @@ -# first line: 463 +# first line: 465 @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, factors, AlgorithmsIDsEnd): @@ -46,12 +46,12 @@ def GridSearchForModels(XData, yData, clf, params, eachAlgor, factors, Algorithm # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_f1_macro','mean_test_precision','mean_test_recall','mean_test_jaccard']) - + # control the factors sumperModel = [] for index, row in metrics.iterrows(): rowSum = 0 - lengthFactors = NumberofscoringMetrics + lengthFactors = len(scoring) for loop,elements in enumerate(row): lengthFactors = lengthFactors - 1 + factors[loop] rowSum = elements*factors[loop] + rowSum diff --git a/frontend/src/components/AlgorithmHyperParam.vue b/frontend/src/components/AlgorithmHyperParam.vue index 9ffb8d967..7692ba980 100644 --- a/frontend/src/components/AlgorithmHyperParam.vue +++ b/frontend/src/components/AlgorithmHyperParam.vue @@ -1,5 +1,5 @@ \ No newline at end of file + + + \ No newline at end of file diff --git a/frontend/src/components/Parameters.vue b/frontend/src/components/Parameters.vue index 95d316171..5fe1ebab1 100644 --- a/frontend/src/components/Parameters.vue +++ b/frontend/src/components/Parameters.vue @@ -36,6 +36,337 @@ export default { svg.selectAll("*").remove(); }, 50); }, + ///////////////////////////////////////////////////////// +/////////////// The Radar Chart Function //////////////// +/////////////// Written by Nadieh Bremer //////////////// +////////////////// VisualCinnamon.com /////////////////// +/////////// Inspired by the code of alangrafu /////////// +///////////////////////////////////////////////////////// + + RadarChart(id, data, options) { + var cfg = { + w: 600, //Width of the circle + h: 600, //Height of the circle + margin: {top: 20, right: 20, bottom: 20, left: 20}, //The margins of the SVG + levels: 3, //How many levels or inner circles should there be drawn + maxValue: 0, //What is the value that the biggest circle will represent + labelFactor: 1.25, //How much farther than the radius of the outer circle should the labels be placed + wrapWidth: 60, //The number of pixels after which a label needs to be given a new line + opacityArea: 0.35, //The opacity of the area of the blob + dotRadius: 4, //The size of the colored circles of each blog + opacityCircles: 0.1, //The opacity of the circles of each blob + strokeWidth: 2, //The width of the stroke around each blob + roundStrokes: false, //If true the area and stroke will follow a round path (cardinal-closed) + color: d3.scale.category10() //Color function + }; + + //Put all of the options into a variable called cfg + if('undefined' !== typeof options){ + for(var i in options){ + if('undefined' !== typeof options[i]){ cfg[i] = options[i]; } + }//for i + }//if + + //If the supplied maxValue is smaller than the actual one, replace by the max in the data + var maxValue = Math.max(cfg.maxValue, d3.max(data, function(i){return d3.max(i.map(function(o){return o.value;}))})); + + var allAxis = (data[0].map(function(i, j){return i.axis})), //Names of each axis + total = allAxis.length, //The number of different axes + radius = Math.min(cfg.w/2, cfg.h/2), //Radius of the outermost circle + Format = d3.format('%'), //Percentage formatting + angleSlice = Math.PI * 2 / total; //The width in radians of each "slice" + + //Scale for the radius + var rScale = d3.scale.linear() + .range([0, radius]) + .domain([0, maxValue]); + + ///////////////////////////////////////////////////////// + //////////// Create the container SVG and g ///////////// + ///////////////////////////////////////////////////////// + + //Remove whatever chart with the same id/class was present before + d3.select(id).select("svg").remove(); + + //Initiate the radar chart SVG + var svg = d3.select(id).append("svg") + .attr("width", cfg.w + cfg.margin.left + cfg.margin.right) + .attr("height", cfg.h + cfg.margin.top + cfg.margin.bottom) + .attr("class", "radar"+id); + //Append a g element + var g = svg.append("g") + .attr("transform", "translate(" + (cfg.w/2 + cfg.margin.left) + "," + (cfg.h/2 + cfg.margin.top) + ")"); + + ///////////////////////////////////////////////////////// + ////////// Glow filter for some extra pizzazz /////////// + ///////////////////////////////////////////////////////// + + //Filter for the outside glow + var filter = g.append('defs').append('filter').attr('id','glow'), + feGaussianBlur = filter.append('feGaussianBlur').attr('stdDeviation','2.5').attr('result','coloredBlur'), + feMerge = filter.append('feMerge'), + feMergeNode_1 = feMerge.append('feMergeNode').attr('in','coloredBlur'), + feMergeNode_2 = feMerge.append('feMergeNode').attr('in','SourceGraphic'); + + ///////////////////////////////////////////////////////// + /////////////// Draw the Circular grid ////////////////// + ///////////////////////////////////////////////////////// + + //Wrapper for the grid & axes + var axisGrid = g.append("g").attr("class", "axisWrapper"); + + //Draw the background circles + axisGrid.selectAll(".levels") + .data(d3.range(1,(cfg.levels+1)).reverse()) + .enter() + .append("circle") + .attr("class", "gridCircle") + .attr("r", function(d, i){return radius/cfg.levels*d;}) + .style("fill", "#CDCDCD") + .style("stroke", "#CDCDCD") + .style("fill-opacity", cfg.opacityCircles) + .style("filter" , "url(#glow)"); + + //Text indicating at what % each level is + axisGrid.selectAll(".axisLabel") + .data(d3.range(1,(cfg.levels+1)).reverse()) + .enter().append("text") + .attr("class", "axisLabel") + .attr("x", 4) + .attr("y", function(d){return -d*radius/cfg.levels;}) + .attr("dy", "0.4em") + .style("font-size", "10px") + .attr("fill", "#737373") + .text(function(d,i) { return Format(maxValue * d/cfg.levels); }); + + ///////////////////////////////////////////////////////// + //////////////////// Draw the axes ////////////////////// + ///////////////////////////////////////////////////////// + + //Create the straight lines radiating outward from the center + var axis = axisGrid.selectAll(".axis") + .data(allAxis) + .enter() + .append("g") + .attr("class", "axis"); + //Append the lines + axis.append("line") + .attr("x1", 0) + .attr("y1", 0) + .attr("x2", function(d, i){ return rScale(maxValue*1.1) * Math.cos(angleSlice*i - Math.PI/2); }) + .attr("y2", function(d, i){ return rScale(maxValue*1.1) * Math.sin(angleSlice*i - Math.PI/2); }) + .attr("class", "line") + .style("stroke", "white") + .style("stroke-width", "2px"); + + //Append the labels at each axis + axis.append("text") + .attr("class", "legend") + .style("font-size", "11px") + .attr("text-anchor", "middle") + .attr("dy", "0.35em") + .attr("x", function(d, i){ return rScale(maxValue * cfg.labelFactor) * Math.cos(angleSlice*i - Math.PI/2); }) + .attr("y", function(d, i){ return rScale(maxValue * cfg.labelFactor) * Math.sin(angleSlice*i - Math.PI/2); }) + .text(function(d){return d}) + .call(wrap, cfg.wrapWidth); + + ///////////////////////////////////////////////////////// + ///////////// Draw the radar chart blobs //////////////// + ///////////////////////////////////////////////////////// + + //The radial line function + var radarLine = d3.svg.line.radial() + .interpolate("linear-closed") + .radius(function(d) { return rScale(d.value); }) + .angle(function(d,i) { return i*angleSlice; }); + + if(cfg.roundStrokes) { + radarLine.interpolate("cardinal-closed"); + } + + //Create a wrapper for the blobs + var blobWrapper = g.selectAll(".radarWrapper") + .data(data) + .enter().append("g") + .attr("class", "radarWrapper"); + + //Append the backgrounds + blobWrapper + .append("path") + .attr("class", "radarArea") + .attr("d", function(d,i) { return radarLine(d); }) + .style("fill", function(d,i) { return cfg.color(i); }) + .style("fill-opacity", cfg.opacityArea) + .on('mouseover', function (d,i){ + //Dim all blobs + d3.selectAll(".radarArea") + .transition().duration(200) + .style("fill-opacity", 0.1); + //Bring back the hovered over blob + d3.select(this) + .transition().duration(200) + .style("fill-opacity", 0.7); + }) + .on('mouseout', function(){ + //Bring back all blobs + d3.selectAll(".radarArea") + .transition().duration(200) + .style("fill-opacity", cfg.opacityArea); + }); + + //Create the outlines + blobWrapper.append("path") + .attr("class", "radarStroke") + .attr("d", function(d,i) { return radarLine(d); }) + .style("stroke-width", cfg.strokeWidth + "px") + .style("stroke", function(d,i) { return cfg.color(i); }) + .style("fill", "none") + .style("filter" , "url(#glow)"); + + //Append the circles + blobWrapper.selectAll(".radarCircle") + .data(function(d,i) { return d; }) + .enter().append("circle") + .attr("class", "radarCircle") + .attr("r", cfg.dotRadius) + .attr("cx", function(d,i){ return rScale(d.value) * Math.cos(angleSlice*i - Math.PI/2); }) + .attr("cy", function(d,i){ return rScale(d.value) * Math.sin(angleSlice*i - Math.PI/2); }) + .style("fill", function(d,i,j) { return cfg.color(j); }) + .style("fill-opacity", 0.8); + + ///////////////////////////////////////////////////////// + //////// Append invisible circles for tooltip /////////// + ///////////////////////////////////////////////////////// + + //Wrapper for the invisible circles on top + var blobCircleWrapper = g.selectAll(".radarCircleWrapper") + .data(data) + .enter().append("g") + .attr("class", "radarCircleWrapper"); + + //Append a set of invisible circles on top for the mouseover pop-up + blobCircleWrapper.selectAll(".radarInvisibleCircle") + .data(function(d,i) { return d; }) + .enter().append("circle") + .attr("class", "radarInvisibleCircle") + .attr("r", cfg.dotRadius*1.5) + .attr("cx", function(d,i){ return rScale(d.value) * Math.cos(angleSlice*i - Math.PI/2); }) + .attr("cy", function(d,i){ return rScale(d.value) * Math.sin(angleSlice*i - Math.PI/2); }) + .style("fill", "none") + .style("pointer-events", "all") + .on("mouseover", function(d,i) { + newX = parseFloat(d3.select(this).attr('cx')) - 10; + newY = parseFloat(d3.select(this).attr('cy')) - 10; + + tooltip + .attr('x', newX) + .attr('y', newY) + .text(Format(d.value)) + .transition().duration(200) + .style('opacity', 1); + }) + .on("mouseout", function(){ + tooltip.transition().duration(200) + .style("opacity", 0); + }); + + //Set up the small tooltip for when you hover over a circle + var tooltip = g.append("text") + .attr("class", "tooltip") + .style("opacity", 0); + + ///////////////////////////////////////////////////////// + /////////////////// Helper Function ///////////////////// + ///////////////////////////////////////////////////////// + + //Taken from http://bl.ocks.org/mbostock/7555321 + //Wraps SVG text + function wrap(text, width) { + text.each(function() { + var text = d3.select(this), + words = text.text().split(/\s+/).reverse(), + word, + line = [], + lineNumber = 0, + lineHeight = 1.4, // ems + y = text.attr("y"), + x = text.attr("x"), + dy = parseFloat(text.attr("dy")), + tspan = text.text(null).append("tspan").attr("x", x).attr("y", y).attr("dy", dy + "em"); + + while (word = words.pop()) { + line.push(word); + tspan.text(line.join(" ")); + if (tspan.node().getComputedTextLength() > width) { + line.pop(); + tspan.text(line.join(" ")); + line = [word]; + tspan = text.append("tspan").attr("x", x).attr("y", y).attr("dy", ++lineNumber * lineHeight + dy + "em").text(word); + } + } + }); + }//wrap + +}, + overview() { + /* Radar chart design created by Nadieh Bremer - VisualCinnamon.com */ + + ////////////////////////////////////////////////////////////// + //////////////////////// Set-Up ////////////////////////////// + ////////////////////////////////////////////////////////////// + + var margin = {top: 50, right: 50, bottom: 50, left: 50}, + width = Math.min(420, window.innerWidth - 10) - margin.left - margin.right, + height = Math.min(width, window.innerHeight - margin.top - margin.bottom - 20); + + ////////////////////////////////////////////////////////////// + ////////////////////////// Data ////////////////////////////// + ////////////////////////////////////////////////////////////// + + var data = [ + [ + {axis:"KNN",value:1}, + {axis:"RF",value:0.30}, + {axis:"Alg3",value:0.55}, + {axis:"Alg4",value:0.68}, + {axis:"Alg5",value:0.22}, + {axis:"Alg6",value:0.28}, + {axis:"Alg7",value:0.55}, + {axis:"Alg9",value:0.68}, + {axis:"Alg9",value:0.22}, + {axis:"Alg10",value:0.28}, + ],[ + {axis:"KNN",value:0.05}, + {axis:"RF",value:0.18}, + {axis:"Alg3",value:0.25}, + {axis:"Alg4",value:0.28}, + {axis:"Alg5",value:0.22}, + {axis:"Alg6",value:0.18}, + {axis:"Alg7",value:0.45}, + {axis:"Alg9",value:0.18}, + {axis:"Alg9",value:0.22}, + {axis:"Alg10",value:0.18}, + ], + ]; + ////////////////////////////////////////////////////////////// + //////////////////// Draw the Chart ////////////////////////// + ////////////////////////////////////////////////////////////// + + var color = d3.scale.ordinal() + .range(["#EDC951","#CC333F","#00A0B0"]); + + var radarChartOptions = { + w: width, + h: height, + margin: margin, + maxValue: 0.5, + levels: 5, + roundStrokes: true, + color: color + }; + //Call function to draw the Radar chart + this.RadarChart("#overview", data, radarChartOptions); + }, draw () { // Clear Heatmap first var svg = d3.select("#overview"); @@ -47,7 +378,6 @@ export default { width = widthinter, height = heightinter, maxBarHeight = height / 2 - (margin + 70); - var innerRadius = 0.1 * maxBarHeight; // innermost circle var svg = d3.select('#overview') @@ -595,11 +925,11 @@ export default { mounted () { EventBus.$on('updateFlagKNN', data => { this.FlagKNN = data }) EventBus.$on('updateFlagRF', data => { this.FlagRF = data }) - EventBus.$on('updateFlagKNN', this.draw) - EventBus.$on('updateFlagRF', this.draw) + EventBus.$on('updateFlagKNN', this.overview) + EventBus.$on('updateFlagRF', this.overview) EventBus.$on('sendParameters', data => { this.storeParameters = data }) EventBus.$on('updateActiveModels', data => { this.storeActiveModels = data }) - EventBus.$on('updateActiveModels', this.draw) + EventBus.$on('updateActiveModels', this.overview) //EventBus.$on('updateActiveModels', this.drawEncodings) EventBus.$on('Responsive', data => { @@ -611,7 +941,7 @@ export default { EventBus.$on('resetViews', this.reset) EventBus.$on('alternateFlagLock', this.updateFlags) - EventBus.$on('alternateFlagLock', this.draw) + EventBus.$on('alternateFlagLock', this.overview) } } @@ -688,4 +1018,8 @@ export default { .filled { fill: url(#mainGradient); } + +#overview { + min-height: 430px; +} \ No newline at end of file diff --git a/frontend/src/components/PerMetricBarChart.vue b/frontend/src/components/PerMetricBarChart.vue index 7b77eb45e..f6df22be6 100644 --- a/frontend/src/components/PerMetricBarChart.vue +++ b/frontend/src/components/PerMetricBarChart.vue @@ -26,8 +26,8 @@ export default { } else { metricsPerModelSel = this.SelBarChartMetrics } - var width = this.WH[0]*3 // interactive visualization - var height = this.WH[1]/2 // interactive visualization + var width = this.WH[0]*6.5 // interactive visualization + var height = this.WH[1]*0.5 // interactive visualization var trace1 = { x: ['Acc','F1s','Pre','Rec','Jac'], y: metricsPerModel, diff --git a/frontend/src/components/PredictionsSpace.vue b/frontend/src/components/PredictionsSpace.vue index 4f77c9362..8d6d7db1a 100644 --- a/frontend/src/components/PredictionsSpace.vue +++ b/frontend/src/components/PredictionsSpace.vue @@ -1,11 +1,17 @@